# The nEDM experiment at PSI

1 Physics motivations
2 Status of the PSI UCN source
3 Status of the running EDM experiment
Systematics Statistical sensitivity

Guillaume Pignol (LPSC Grenoble) IN2P3 scientific council, 24/10/2013

### The nEDM

$$H = -ec{\mu_n} \cdot ec{B} - ec{d_n} \cdot ec{E} = h 
u_L/2$$



### If nonzero, EDM violates T, thus CP

### nEDM to probe generic BSM CP violation





3

### nEDM to probe electroweak baryogenesis

Sakharov conditions at electroweak phase transition

1 Departure from thermal equilibrium requires BSM scalar sector to get a strong first order transition. May or may not be accessible at the LHC

# 

### *2 CP violation* requires BSM physics, accessible by the next generation of EDM experiments

### *3 Violation of B conservation* SM sphaleron transitions in the symmetric phase

### Minimal electroweak baryogenesis

S. J. Huber, M. Pospelov and A. Ritz, Phys. Rev. D 75, 036006 (2007)



### The quest for EDMs

- Neutrons -20
  - @ILL
  - @ILL,@PNPI
  - @PSI
  - @FRM-2
  - @RCNP,@TRIUMF
  - @SNS
  - @J-PARC

- Molecules
- o YbF@Imperial
  - PbO@Yale
  - ThO@Harvard
  - HfF+@JILA
  - WC@UMich
    - PbF@Oklahoma



Ions-Muons

- @BNL

-200

- @FZJ
- @FNAL
- @JPARC
- Solids
- 10 GGG@Indiana
  - ferroelectrics@Yale

Rough estimate of numbers of researchers, in total ~500 (with some overlap)

- Atoms
  - Hg@UWash
  - Xe@Princeton
  - Xe@TokyoTech
  - Xe@TUM
  - Xe@Mainz
  - Cs@Penn
  - Cs@Texas
  - Fr@RCNP/CYRIC
  - Rn@TRIUMF
  - Ra@ANL
  - Ra@KVI
  - Yb@Kyoto

### The PSI EDM collaboration



M. Burghoff, S. Knappe-Grüneberg, A. Schnabel, J. Vogt

<u>G. Ban</u>, V. Hélaine, T. Lefort, Y. Lemiere, G. Quéméner

- K. Bodek, M. Rawlik, G. Wyszynski, J. Zejma
- A. Kozela
- N. Khomutov
- M. Kasprzak, H.C Koch, A. Weis, Z. Grujic
- Y. Kermaïdic, G. Pignol, D. Rebreyend, B. Clément,
- S. Afach
- N. Severijns, P. Pataguppi
- W. Heil
- S. Roccia,
- G. Bison , Z. Chowdhuri, M. Fertl, B. Lauss, S. komposch D. Ries, P. Schmidt-Wellenburg, G. Zsigmond
- B. Franke, <u>K. Kirch</u>, J. Krempel, F. Piegsa, D. Zhu

Physikalisch Technische Bundesanstalt, Berlin

Laboratoire de Physique Corpusculaire, **Caen** 

Institute of Physics, Jagiellonian University, **Cracow** 

Henryk Niedwodniczanski Inst. Of Nucl. Physics, Cracow

Joint Institute of Nuclear Reasearch, **Dubna** 

Département de physique, Université de Fribourg, Fribourg

Lab. de Physique Subatomique et de Cosmologie, Grenoble

Biomagnetisches Zentrum, Jena

Katholieke Universiteit, Leuven

Inst. für Kernchemie, Johannes-Gutenberg-Universität, **Mainz** 

Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Paris

Paul Scherrer Institut, Villigen

Eidgenössische Technische Hochschule, Zürich



LEUVE

CSNSM

# The nEDM experiment at PSI

1 Physics motivations
2 Status of the PSI UCN source
3 Status of the running EDM experiment
Systematics Statistical sensitivity

### The PSI UCN source, availability



### The PSI UCN source, intensity



### The PSI UCN source, recent progress





Recently measured thermal neutron flux agrees with calculations.

Improvement by factor of ~15 in UCN output can still be gained, a goal actively pursued by the PSI group.

# The nEDM experiment at PSI

1 Physics motivations 2 Status of the PSI UCN source 3 Status of the running EDM experiment **Systematics** Statistical sensitivity



### **OILL** spectrometer



### **Current nEDM apparatus at PSI**



OILL apparatus moved from ILL to PSI in 2009

### **IN2P3** contribution



- UCN detectors (Nanosc) and electronics (FASTER)
- Spin analysis system (USSA)
- Magnetic field mapper





- Central DAQ module
   hardware+software
- B<sub>0</sub> stable current source
- Hg comagnetometer: optics
- Parts of precession chamber electrode, shutter

# The nEDM experiment at PSI

1 Physics motivations 2 Status of the PSI UCN source 3 Status of the running EDM experiment **Systematics** Statistical sensitivity

### Systematic effects

| Effects                 | Status        | RAL/Sussex/ILL (2006) |
|-------------------------|---------------|-----------------------|
| Direct Effects          |               |                       |
| Uncompensated B-Drifts  | $0.5 \pm 1.2$ | $0 \pm 2.4$           |
| Leakage Current         | $0.00\pm0.05$ | $0\pm0.1$             |
| $V \times E$ UCN        | $0\pm0.1$     | $0\pm 1$              |
| Electric Forces         | $0\pm0.4$     | $0\pm0.4$             |
| $\operatorname{Hg}$ EDM | $0.02\pm0.06$ | $-0.4\pm0.3$          |
| Hg Direct Light Shift   | $0 \pm 0.008$ | $0 \pm 0.2$           |
| Indirect Effects        |               |                       |
| Hg Light Shift          | $0 \pm 0.05$  | $3.5\pm0.8$           |
| Quadrupole Difference   | $1.3 \pm 2.4$ | $-1.3 \pm 2$          |
| Dipoles                 |               | $-5.6 \pm 6.3$        |
| At the surface          | $0\pm0.4$     |                       |
| Other Dipoles           | $0\pm 3$      |                       |
| Total                   | $1.8 \pm 4.1$ | $-3.8\pm7.2$          |

Table 2: Status of the constrain on systematic effects in units of  $10^{-27}e \cdot \text{cm}$ .

### **Example: gravitational effect**



Center of gravity height difference is  $\,hpprox 2~{
m mm}$ 

R = fn / fHg depends on 
$$R = rac{\gamma_n}{\gamma_{
m Hg}} \left(1 - rac{(\partial B/\partial z)h}{B}
ight)$$
vertical gradients

### **Gravitational effect**



# Interpretation: measurement of the neutron magnetic moment



### Publications, R&D and byproducts

*Experimental study of 199Hg spin anti-relaxation coatings* Z. Chowdhuri et al, **Applied Physics B (2013)** 1.

Development of a multifunction module for the neutron electric dipole moment experiment at PSI O. Bourrion, G. Pignol, D. Rebreyend, C. Vescovi, **NIM A (2013)** 278.

*Electric dipole moment searches: reexamination of frequency shifts for particles in traps* G. Pignol, S. Roccia, **Physical Review A 85 (2012)** 042105.

*First observation of trapped high-field seeking ultracold neutron spin states* M. Daum et al, **Physics Letters B 704 (2011)** 456.

*New constraints on Lorentz invariance violation from the neutron electric dipole moment* I. Altarev et al, **Europhysics Letters 92 (2010)** 51001.

*Test of Lorentz invariance with spin precession of ultracold neutrons* I. Altarev et al, **Physical Review Letters 103 (2009)** 081602.

*Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields* I. Altarev et al, **Physical Review D 80 (2009)** 032003.

*Direct Experimental Limit on Neutron–Mirror-Neutron Oscillations* G. Ban et al, **Physical Review Letters 99 (2007)** 161603.

# The nEDM experiment at PSI

1 Physics motivations 2 Status of the PSI UCN source 3 Status of the running EDM experiment **Systematics** Statistical sensitivity

### **Statistical sensitivity**

 $\sigma d_n = \frac{\hbar}{2 \ a \ E \ T \ \sqrt{N}}$ 

|                           | RAL-Sussex-ILL |       | PSI 2012 |           | PSI 2013 |            |
|---------------------------|----------------|-------|----------|-----------|----------|------------|
|                           | Best           | Mean  | Best     | Mean      | Best     | Mean       |
| E (KV/cm)                 | 8.8            | 8.3   | 8.3      | 7.9       | 12       | 10.3       |
| Nb UCN                    | $14\ 000$      | 14000 | 9 000    | $5 \ 400$ | 8 400    | $6 \ 300$  |
| T precession (s)          | 130            | 130   | 200      | 200       | 180      | 180        |
| $\alpha$                  | 0.6            | 0.45  | 0.65     | 0.57      | 0.62     | 0.56       |
| Sensitivity per           |                |       |          |           |          |            |
| cycle (× $10^{-25}$ e.cm) | 43             | 57    | 32       | 50        | 27       | 39         |
| Nb cycle per day          | 360            | 360   | 150      | 150       | 200      | 200        |
| Sensitivity per           |                |       |          |           |          |            |
| day (× $10^{-25} e.cm$ )  | 2.3            | 3.0   | 2.6      | 4.0       | 1.9      | <b>2.8</b> |

### **Statistical sensitivity**



### Conclusions

5000 EDM cycles recorded with OILL@PSI in 2012-2013 Statistical power at 6 x 10<sup>-26</sup> e cm Systematics controlled at 0.4 x 10<sup>-26</sup> e cm

-> a great laboratory to study n2EDM systematics

Improving the previous limit with OILL is possible provided

- 3 more years of data taking
- Increased availability of the source for EDM
- Improved statistics (better UCN source and/or UCN transport)

# The nEDM experiment at PSI

# BACKUP SLIDES

### **Collaboration list**

=

M. Burghoff, A. Schnabel, J. Voigt<sup>1</sup> **PTB:** *Physikalisch Technische Bundesanstalt, Berlin, Germany* 

G. Ban, V. Hélaine<sup>1,2</sup>, T. Lefort, Y. Lemière, O. Naviliat-Cuncic<sup>3</sup>, G. Quéméner LPC: Laboratoire de Physique Corpusculaire, Caen, France

K. Bodek, M. Perkowski<sup>1</sup>, G. Wyszynski<sup>1,4</sup>, J. Zejma JUC: Jagellonian University, Cracow, Poland

A. Kozela

HNI: Henryk Niedwodniczański Institute for Nuclear Physics, Cracow, Poland

N. Khomutov JINR: Joint Institute for Nuclear Research, Dubna, Russia

Z. Grujic, M. Kasprzak, H. C. Koch<sup>1,5</sup>, A. Weis FRAP: University of Fribourg, Switzerland

G. Pignol, D. Rebreyend LPSC: Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France

> P. N. Prashanth<sup>1,2</sup>, N. Severijns KUL: Katholieke Universiteit, Leuven, Belgium

> C. Crawford University of Kentucky Lexington, KY, USA

> > S. Roccia

CSNSM: Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Orsay, France

### W. Heil<sup>6</sup>

GUM: Institut für Physik, Johannes-Gutenberg-Universität, Mainz, Germany

S. Afach, G. Bison<sup>7</sup>, Z. Chowdhuri, M. Daum, M. Fertl<sup>1,4</sup>, B. Franke<sup>1,4</sup>, B. Lauss<sup>8</sup>,

A. Mtchedlishvili, D. Ries<sup>1,4</sup>, P. Schmidt-Wellenburg<sup>8</sup>, G. Zsigmond PSI: Paul Scherrer Institut, Villigen, Switzerland

> K. Kirch<sup>2,6</sup>, F. Piegsa, J. Krempel ETHZ: ETH Zürich, Switzerland

| S. Boccia    | MdC           | CSNSM      |
|--------------|---------------|------------|
| G. Ban       | Professor     | LPCC       |
| V. Hélaine   | PhD student   | LPCC / PSI |
| T. Lefort    | MdC           | LPCC       |
| Y. Lemière   | MdC           | LPCC       |
| G. Quémner   | $\mathbf{CR}$ | LPCC       |
| B. Clément   | MdC           | LPSC       |
| G. Pignol    | MdC           | LPSC       |
| Y. Kermaïdic | PhD student   | LPSC       |
| D. Rebreyend | $\mathbf{DR}$ | LPSC       |

## Le magnétomètre mercure

Le Comagnétomètre corrige les fluctuations du champ magnétique



### Test de l'invariance de Lorentz

Interaction potential A spin up (at ILL)  $V = \frac{\hbar}{2} \gamma_n \ \sigma \cdot \mathbf{B} + \sigma \cdot \tilde{\mathbf{b}}$ Earth rotation axis Neutron spin precession  $f_n = \frac{1}{2\pi} \left| \gamma_n \mathbf{B} + \frac{2}{\hbar} \tilde{\mathbf{b}} \right|$ Daily modulation Cosmic axial field b  $f_n(t) = \frac{\gamma_n}{2\pi} B + \frac{1}{\pi\hbar} b_\perp \cos(\lambda) \sin(\frac{2\pi t}{24h} + \phi).$ 

### Limite sur la modulation a 24h

April 2008, 5 days of data. December 2008, 6 days of data.



Altarev et al, Phys. Rev. Lett 103 (2009)

### **Ultracold neutrons (UCN)**



are reflected by material walls

### **Geometric phase of mercury**



Frequency shift correlated with electric field False EDM for Mercury (fast regime of GPE)

$$d_{\rm Hg}^{\rm False} = \frac{\hbar \gamma_{\rm Hg}^2}{32c^2} \ D^2 \ \frac{\partial B}{\partial z}$$

Pendlebury et al, PRA **70** 032102 (2004)

$$\begin{array}{ll} \mbox{False neutron EDM} \\ \mbox{when using Hg} \\ \mbox{comagnetometer} \end{array} \quad d_{n}^{\mbox{False}} = \frac{\gamma_{n}}{\gamma_{\rm Hg}} \, d_{\rm Hg}^{\mbox{False}} \quad \begin{array}{ll} \mbox{Indirect} \\ \mbox{systematic effect} \\ \mbox{systematic effect} \end{array} \end{array}$$

### **Dedicated measurement with Hg magnetometer**

- 1) Apply a large magnetic gradient with trimcoils
- 2) Apply an electric field of 100 kV/12 cm, with polarity reversed every 20 cycles
- 3) Take data for 20 days with different gradient configurations



A clear correlation between Hg frequency and the electric field in the presence of a magnetic gradient.

### **Dedicated measurement with Hg magnetometer**



### Impurities on the electrode



Approximate dipole position x = 31 cm, z = -0.6 cm

### Approximate dipole strength

$$p = \frac{\mu_0}{4\pi}m = 26.5 \text{ nT cm}^3$$

We would then quote a systematic effect

$$\Delta d_n = 0.4 \times 10^{-27} \ e \ \mathrm{cm}$$

### Transverse field measured with fluxgate maps



$$d_{\rm False} = \frac{\hbar \gamma_n \gamma_{\rm Hg} D^2}{128c^2 B_0 \Delta h} \left( \langle B_{\perp}^2 \rangle_{\downarrow} - \langle B_{\perp}^2 \rangle_{\uparrow} \right)$$