

MYRRHA Accelerator eXperiment research & development programme

Les accélérateurs pour les ADS

Jean-Luc BIARROTTE, CNRS-IN2P3 / IPN Orsay

Coordinateur du projet MAX (EURATOM FP7)

MYRRHA Accelerator eXperiment research & development programme

1.Introduction

2. Spécificités de l'accélérateur ADS

R&D récente autour de l'accélérateur de MYRRHA
 Conclusion

Le R&D sur les accélérateurs ADS à l'IN2P3

- ➤ 1997-2002 : premières études CNRS autour des projets ASH, TRASCO, AAA, et création du PIR CNRS sur l'aval du cycle PACE (→ PACEN → NEEDS)
- > 2002 : 1^{er} design "MYRRHA Draft 1" par le SCK•CEN (cyclotron 350 MeV)
- 2002-2004 : études autour du projet Européen PDS-XADS (FP5) (cyclotron -> accélérateur linéaire, introduction du concept de tolérance aux pannes)
- 2005 : nouveau design "Myrrha Draft 2" (linac 350 MeV)
- 2005-2010 : études autour du projet Européen EUROTRANS (FP6) (linac 600 MeV pour démonstrateur, activités R&D orientées fiabilité)
- 2010 : MYRRHA est sur la feuille de route Européenne ESFRI et est officiellement soutenu par le gouvernement belge
- 2010-2015 : design détaillé de MYRRHA avec soutien des projets Européens CDT, MAX, FREYA, MARISA (FP7)

MYRRHA et le FP7 d'EURATOM (2010-2014)

Le projet MAX

<u>But</u>: obtenir un design de reference consolidé pour le linac de MYRRHA, avec un niveau de confiance & de détail suffisants pour initier à partir de 2015 une éventuelle phase d' "engineering design" puis de construction

MYRRHA Accelerator eXperiment research & development programme

1. Introduction

2. Spécificités de l'accélérateur ADS

R&D récente autour de l'accélérateur de MYRRHA
 Conclusion

MYRRHA en tant que démonstrateur ADS

Démontrer la faisabilité physique et technologique de l'ADS, et en particulier:

le concept de l'ADS

(couplage accélérateur + source de spallation + réacteur à hte puissance)

In transmutation des actinides mineurs (assemblages expérimentaux) Reactor Accelerator subcritical mode (50-100 MWth) (600 MeV - < 4 mA proton) critical mode (~100 MWth) Main features of the ADS demo 50-100 MWth power Spallation source k_{eff} around 0.95 600 MeV, 2.5 - 4 mA proton beam Highly-enriched MOX fuel Multipurpose Fast flexible Pb-Bi Eutectic coolant & target neutron irradiation source facility ead-Bismuth

coolant

Faisceau de protons requis pour MYRRHA

Proton energy	600 MeV	
Peak beam current	0.1 to 4.0 mA	
Repetition rate	1 to 250 Hz	
Beam duty cycle	10 ⁻⁴ to 1	
Beam power stability	< \pm 2% on a time scale of 100ms	
Beam footprint on reactor window	Circular Ø85mm	
Beam footprint stability	$< \pm$ 10% on a time scale of 1s	
# of allowed beam trips on reactor longer than 3 sec	10 maximum per 3-month operation period	
# of allowed beam trips on reactor longer than 0.1 sec	100 maximum per day	
# of allowed beam trips on reactor shorter than 0.1 sec	unlimited	

Panorama des accélérateurs de p/d de forte puissance

Faisceau de protons requis pour MYRRHA

----> Faisceau de très forte puissance (2.4 MW)

Proton energy	600 MeV	
Peak beam current	0.1 to 4.0 mA	
Repetition rate	1 to 250 Hz	
Beam duty cycle	10 ⁻⁴ to 1	
Beam power stability	< \pm 2% on a time scale of 100ms	
Beam footprint on reactor window	Circular Ø85mm	
Beam footprint stability	$< \pm$ 10% on a time scale of 1s	
# of allowed beam trips on reactor longer than 3 sec	sec 10 maximum per 3-month operation period	
# of allowed beam trips on reactor longer than 0.1 sec	100 maximum per day	
# of allowed beam trips on reactor shorter than 0.1 sec	unlimited	

→ Fiabilité extrême

L'enjeu majeur : la fiabilité

L'enjeu majeur : la fiabilité

Les arrêts faisceau de plus de 3 secondes doivent être évités

- Pour limiter les contraintes thermiques et la fatigue mécanique de la cible, du combustible, des assemblages
- Pour assurer un niveau de disponibilité de 80%

Spécifications Myrrha: <10 arrêts faisceau par cycle de 3 mois

- Basées sur l'analyse de l'opération du réacteur PHENIX
- MTBF > 250h, bien au-delà des performances des accélérateurs actuels
- Notablement plus sévères que les spécifications ADS au Japon ou aux USA
- Des règles strictes doivent être suivies pendant le conception
 - Design robuste (simplicité, optiques stables, marges sur les pts de fonctionnements...)
 - Inclusion de redondances (parallèles, séries si possible)
 - Assurer des schémas de maintenance efficaces (en ligne lorsque possible)

L. Burgazzi, P. Pierini,

Rel.Eng&Syst.Saf (2007)

Scénario de compensation de panne (injecteur)

Une panne est détectée

et al., NIM A (2006)

Scénario de compensation de panne (linac principal)

- Une panne est détectée quelque part
- \rightarrow Le faisceau est coupé par le MPS dans l'injecteur à t_o
- 2 La panne est localisée dans la boucle RF d'une cavité supraconductrice

 \rightarrow Par le système de diagnostic de pannes

- Θ De nouveaux réglages V/φ sont appliqués aux cavités adjacentes
- → Réglages déterminés & enregistrés lors du commissioning de la machine et/ou via appli dédiée

J-L. Biarrotte, D. Uriot, Phys.Rev ST AB (2007)

- La cavité en panne est mise hors fréquence
- → Pour éviter de perturber le faisceau

- Après retour à l'équilibre, le faisceau est ré-injecté à $t_1 < t_0 + 3sec$
- → Et le système RF en panne est réparé en ligne si possible

INJECTOR BUILDING

L'accélérateur linéaire de MYRRHA

MYRRHA Accelerator eXperiment research & development programme

1. Introduction

2. Spécificités de l'accélérateur ADS

3. R&D récente autour de l'accélérateur de MYRRHA

4. Conclusion

Source & ligne basse énergie (30 keV)

Source ECR prototype Pantechnik (SCK*CEN)

Ligne basse énergie en cours de construction (LPSC Grenoble + SCK*CEN)

R&D à venir : physique faisceau en régime de compensation de charge d'espace

Impact of SSC rising time, courtesy of N. Chauvin CEA Saclay

RFQ (30 keV - 1.5 MeV)

- Solution de ref. = structure "4-rod" à 176.1 MHz
- R&D à Frankfurt sur la fiabilisation (thermique)
- Construction d'un prototype RFQ de 1m achevée (prêt pour tests RF forte puissance)
- Prochaine étape = proto RFQ entier (SCK*CEN)

Parameter	EUROTRANS	MYRRHA	SARAF
f [MHz]	352	176	176
W _{in} [MeV] / W _{out} [MeV]	0.05 / 3	0.03 / 1.5	0.02 / 1.5
U [kV]	65	40	32.5
E _{s, max} / E _k	1.7	1	0.8
a _{min} [mm]	2.3	2.9	2.7
m _{max}	1.8	2.3	2.7
g _{min} [mm]	2.6	3.6	3.7
ε _{in} ^{t., n., rms} [π mm-mrad]	0.2	0.2	0.175
ε _{out} ^{t., n., rms} [π mm-mrad]	0.21 / 0.20	0.22 / 0.22	0.19* / 0.19*
ε _{out} ^{I., rms} [π keV-deg]	109	64.6	36*
<i>L</i> [m]	4.3	4.0	3.8
T [%] / T _{10mA} [%]	~100 / ~100	~100 / ~100	95.5* / 92.3*
R _p [kΩm]	61 (MWS)	67 (after SARAF)	67 (meas.)
P _c [kW/m]	69.8 (MWS, +20%)	23.5	15.8

MYRRHA RFQ parameters & emittance evolution

Booster CH-DTL (1.5 – 17 MeV)

Aussi compact que possible

Basé sur le principe "KONUS beam dynamics"; un design alternatif + conventionnel est à l'étude

MYRRHA reference injector layout

Construction de prototypes de cavités CH à 176 MHZ achevés (prêts pour tests RF)

Ligne moyenne énergie (17 MeV)

Design de la ligne de connection entre les 2 injecteurs

> Définition préliminaire des procédures d'aiguillage rapide

Linac supraconducteur principal (17 – 600 MeV)

Conception du linac SC: 230 mètres, 102 cavités, capacités de tolérances aux pannes

Thèmatique principale = physique faisceau lors des scenarios de récupération de pannes

R&D générique sur les cavités Spoke

Conception du cryomodule Spoke MYRRHA

Fabrication de 2 cavités prototypes en 2014 (appel d'offre en cours de lancement)

Section #	#1	#2	#3	
E _{input} (MeV)	17.0	80.8	184.2	
E _{output} (MeV)	80.8	184.2	600.0	
Cav. Technology	Spoke	Elliptical		
Cav. freq. (MHz)	352.2	704.4		
Cavity optimal β	0.375	0.510	0.705	
Nb of cells / cav.	2	5	5	
Focusing type	NC quadrupole doublets			
Nb cav / cryom.	2	2	4	
Total nb of cav.	48	34	60	
Nominal E _{acc} * (MV/m)	6.4	8.2	11.0	
Synch. phase (deg)	-40 to -18	-36 to -15		
4 mA beam load / cav. (kW)	1.5 to 8	2 to 17	14 to 32	
Nominal Qpole gradients (T/m)	5.1 to 7.7	4.8 to 7.0	5.1 to 6.6	
Section length (m)	73.0	63.9	100.8	

Main parameters of the MYRRHA linac

Linac supraconducteur principal (17 – 600 MeV)

Demonstration de la technologie 700 MHz en régime RF CW et en environnement "accélérateur"

Coupleurs conditionnés, première expérience à 80kW et 2K prévue en Novembre 2013

Planning experimental sur les procédures de compensation de pannes par re-réglage rapide (gestion SAF, DLLRF...)

F. Bouly, thèse de doctorat (2011)

NFN

stituto Naziona

Extraction pour ISOL@MYRRHA (600 MeV)

Preliminary layout of the ISOL@MYRRHA extraction zone

Ligne d'injection réacteur (600 MeV)

Design de la ligne d'injection, avec arrêt faisceau 2.4 MW (PSI-like) & balayage de la cible

Interface réacteur à re-travailler

Layout of the MYRRHA beam lines to reactor & dump

Etudes faisceaux

> Definition de la structure faisceau et de la stratégie de contrôle

Reference MYRRHA beam time structure for 2.4 MW operation: -> long 4mA blue pulses are sent to the reactor (mean power is adjusting with pulse length) -> short red ones are sent to ISOL (creating 200us beam holes for reactor subcriticity monitoring)

- "Benchmarking" de codes (TraceWin, LORASR, Track)
- Simulations "start-to-end" (nominal, avec pannes)
- Etudes d'erreurs Monte Carlo à venir

J-L. Biarrotte et al., Proc. TC-ADS 2013

Etudes fiabilité, optimisation systèmes

Modélisation de la fiabilité du linac de SNS, avec résultats concluants Vs logbook

Modèle en cours d'adaptation pour le linac de MYRRHA

A. Pitigoï, Proc. TC-ADS 2013

Local compensation sequence: basis for « COMP » fault tree

MYRRHA Accelerator eXperiment research & development programme

1. Introduction

2. Spécificités de l'accélérateur ADS

3. R&D récente autour de l'accélérateur pour MYRRHA

4. Conclusion

Produire un faisceau de type MYRRHA (forte puissance + très fiable) est un challenge très intéressant (& difficile) à relever

o Le niveau de fiabilité requis par MYRRHA est extrêment élevé

✓ 2 ordres de grandeur > SNS (seul linac SC forte puissance existant, en attendant Spiral-2 !)

• Un faisceau ~MW n'est pas facile à produire et contrôler (halo, protection machine...)

✓ SNS a mis 3 ans pour atteindre le MW ($P_{MYRRHA} = 2 \times P_{SNS}$, $P_{ind_ADS} = 15 \times P_{SNS}$)

Les études actuelles sont principalement dédiées à la conception machine et à la R&D sur certains composants clé.

Nous avons acquis une certaine confiance sur la pertinence des solutions envisagées

✓ Feedback positif lors de la "MYRRHA Design Review" de Novembre 2012

 Le besoin en R&D reste très important pour démontrer complètement la faisabilité et préparer une éventuelle phase de construction de MYRRHA

✓ Construction injecteur échelle 1 (initié au LPSC + SCK*CEN), prototypage cryomodules, problématiques à l'interface réacteur...

>L'IN2P3 est jusqu'à présent l'organisme leader sur la thématique

o 15 ETP sur la R&D linac MYRRHA, dt la moitié vient de l'IN2P3 (IPNO: 5, LPSC: 2)

>Les activités R&D accélérateurs ADS semblent globalement appréciées et soutenues

Soutien de l'IN2P3 depuis plusieurs années (AP) + FP5/6/7 + PACEN/NEEDS

• Un projet de type "MAX II" (2015-2018) est fortement encouragé par EURATOM

o Impact potentiel sur la fiabilité des accélérateurs du futur

Les activités des prochaines années seront probablement très conditionnées par la décision de construire (ou de ne pas construire) MYRRHA

• Quid d'une position française sur MYRRHA ?

• Quid d'une éventuelle implication forte de l'IN2P3 dans la construction ? (à la ESS)

• En préalable, un engagement fort du SCK*CEN au niveau Accélérateurs est requis

✓ Le groupe Accélérateurs du SCK*CEN se résume actuellement à... 3 personnes !!

 ✓ La com. actuelle du SCK = "le CNRS va fournir l'accélérateur de MYRRHA" est irréaliste, une "Central Design Team" d'envergure sera nécessaire sur place (cf. ESS, SPIRAL2...)

MYRRHA Accelerator eXperiment research & development programme

Merci pour votre attention !

