Sterile neutrino search with sources: SOX & CeLAND

a status report

IN2P3 Conseil Scientifique 27/06/2013

Davide Franco APC - CNRS

Why?

Detectors:

- Borexino and KamLAND
- Large sizes: larger or compatible w.r.t. oscillation lengths
- Already existing, running, and well-known

Sources:

- Compact sizes: equal to or smaller than the oscillation lengths
- Can be calibrated (even if @1% accuracy is a challenge)
- Already **produced** in the past (⁵¹Cr) or in phase of production test (¹⁴⁴Ce)
- Can be removed: background control

Funding:

- Clear message from Europe: 2 ERC grants ~ 5 ME
- Interest in the **US**: DOE funding ~ 0.75 M\$

CeLAND SOX

Detector: **KamLAND** (Borexino?)

```
CL-A (2015)
75 kCi <sup>144</sup>Ce in the WT
6 months of data taking
```

CL-B (2016/2017) 50 kCi ¹⁴⁴Ce source in the center 1.5 y of data taking

Detector: Borexino

SOX-A (2015) 10MCi ⁵¹Cr in Icarus pit 8.25 m from the center 3 months of data taking

SOX-B (end 2015) 75 kCi ¹⁴⁴Ce source in W.T.. PPO everywhere to enhance sensitivity

SOX-C (2016/2017) 50 kCi ¹⁴⁴Ce source in the center. Only after the end of solar program

CeLAND Phase A

Cerium Source

- 75 kCi 144Ce-144Pr production in 2014: OK Negotiation ongoing
- Delivery of 75 kCi 144Ce in Jan. 2015

Shielding: Design for phase 1 – cost/schedule: **OK**

Logistic: No final solution secured for transportation

Activity Calibration: Calorimeter design ongoing, Ge

Host Detector Deployment: KamLAND: OK

CeLAND Collaboration:

- CEA: DSM-Irfu / DEN / SPR / LNHB / DRI
- KamLAND Japanese Collaboration, Irfu (ERC), Hawaii U. (DOE funding), LBNL/ UCB, Russia (Mephi)

Goal: Start Data Taking Middle 2015

CeLAND Sensitivities

Phase B

Phase A

75 kCi ¹⁴⁴Ce (±1%) @ 9.3 m from center – 0.5 y, contours @ 90.00000 % CL 10² 10¹ 10¹ shape only Δm^2_{new} (eV²) ${{ \Delta m}^2_{{{{\mathsf{hew}}}}}}\left({{\mathsf{eV}}^2} ight)$ 10⁰ best fit 10 10⁻¹ ¹⁴⁴Ce - 50 kCi - 1 y - W.Cu shield: 30/5cm, 95% CL rate + shape Same as solid curve but shape only shape only Reactor v anomaly, PRD 83 073006 (2011), 95% CL Reactor v anomaly, PRD 83 073006 (2011), 95% CL Reactor v anomaly, PRD 83 073006 (2011), 90% CL Reactor v anomaly, PRD 83 073006 (2011), 90% CL 10⁻² 10⁻² 10⁻² 10^{-1} 10[°] 10⁻¹ 10⁻² sin²(20_{new}) 10⁰ sin²(20_{new})

SOX Phase A

Source: v_e^{51} Cr source: E = 0.746 MeV and $t_{1/2}$ = 40 d (35 kg, 38% ⁵⁰Cr at Saclay) **Production**: neutron irradiation of ⁵⁰Cr in reactor (Oak Ridge/Ludmila) **Detection**: ES – Compton like edge energy spectrum + time decay component **Resolutions**: ~5% at 1 MeV – spatial ~10 cm **Background**: ⁸⁵Kr<8.8 cpd/100 t - ²¹⁰Bi=18 ± 4 cpd/100 t - ²³⁸U<9.7 10⁻¹⁹ g/g - ²³²Th<2.9 10⁻¹⁸ g/g. Perfectly constrained after 3 years of data taking. **Detector**: no modification needed! (ICARUS pit foreseen since beginning of Bx)

SOX Status

Chromium source and delivery

- 10 MCi production: negotiation ongoing with Oak Ridge and Ludmila
- The French agency (ASN) is about to sign the authorization to export the source from France to Italy.
- 5 x 2.4 MCi source to be delivered by plane to Italy
- Re-assembling of the source at Casaccia (not far from Rome and LNGS) by ENEA
- Truck transportation to LNGS (delivery time max 7 days)
- Preliminary contact with ISPRA (institute for environmental protection and research). Positive opinion on the feasibility.

Funding: Advanced ERC ~3.5 ME

Source activity calibration: Calorimeter + Ge + Chemical (V50)

SOX collaboration: Borexino Collaboration + new members from Dresden (K. Zuber) and Virginia Tech (J. Link)

Secondary physics goals: neutrino magnetic moment, test of running EW

Goal: Start data taking (3 months) early 2015

SOX Sensitivities

A joint effort:

the calorimeter

Several calibration approaches to reduce the systematic error on the source activity at 1% accuracy

Calibration with calorimeter for both the source

Common SOX/CeLAND development: two teams of engineers at CEA and in Genoa already working on it

SOX-A: constant calibration along all the data taking: the calorimeter must fit the ICARUS pit

CeLAND-A calibrations before and after the data taking

Preliminary study 10 MCi ⁵¹Cr case: Thermal power ~ 1.9 kW With cooling: T_{ext} 44 deg

CeLAND & SOX: All Phases

CeLAND & SOX + STEREO & SOLID

