

La physique auprès du GANIL et Spiral1

morceaux choisis 2008-2012

Conseil Scientifique de l'IN2P3 - 31 janvier 2013

Stéphane Grévy - CENBG

Les grandes questions adressées au GANIL par la communauté de Physique Nucléaire

- Interactions fondamentales > Quelles sont les limites du Model Standard ?

- Astrophysique nucléaire > Comment sont synthétisés les éléments chimique dans l'Univers ?

THEMATIQUES

Structure

Novaux Super Lourds

Mécanismes de réaction

- Quels sont les mécanismes d'explosion des étoiles en SuperNovae ?
- Comment évoluent les effets de couches (nombres magiques, formes) ? Quelles sont les limites d'existence en isospin et masse
- Quelle est l'équation d'état de la matière nucléaire Comment parvenir à une description microscopique des processus de fusion, fission et collisions nucléaires rapprochées ?

Les grandes questions adressées au GANIL par la communauté de Physique Nucléaire

- Interactions fondamentales
- Astrophysique nucléaire
- THEMATIQUES - Structure
 - Noyaux Super Lourds
 - Mécanismes de réaction

La décroissance nucléaire eta pour tester le secteur electrofaible du Standard Model

Motivations:

Courants exotiques dans l'interaction faible (test de la théorie V-A)

Etude des corrélations angulaires dans les coïncidences β -ions

Test de la matrice CKM

Décroissance des noyaux miroirs $\rightarrow V_{ud}$ (alternative aux transitions de Fermi $0^+ \rightarrow 0^+$)

Décroissance β = processus semi leptonique gouverné par l'interaction faible Taux de décroissance: W(E,θ) = W(E) [1 + $\frac{v_e}{c} \cos(\theta)$]

$$a(C_{V},C_{A},C_{S},C_{T}) = \frac{\left[|C_{V}|^{2} + |C_{V}|^{2} - |C_{S}|^{2} - |C_{S}|^{2} + |C_{S}|^{2} + |C_{T}|^{2} + |C_{T}|^{2} + |C_{T}|^{2} - |C_{A}|^{2} - |C_{A}|^{2} + |C_{A}|^{2} + |C_{T}|^{2} + |C_{A}|^{2} + |C_{A}|^{$$

- Certaines sections efficaces sont particulièrement importantes pour les processus stellaires Utilisation de la diffusion élastique résonante -> exploration d'un large domaine en énergie d'excitation
- cycle CNO : destruction d'un émetteur γ cosmique

 Nouvelle résonance très large
 → impact important sur les novae (moins de ¹⁸F → moins de rayonnement γ)

• nucléosynthèse (processus r) : Etude de la capture 2p

→ nouvel état observé dans ¹⁸Na : la décroissance 2p se fait via la traine de la résonnace

o Interactions fondamentales
 o Astrophysique nucléaire
 o Structure
 o Mécanismes de réaction
 o Noyaux Super Lourds

Stable CSS ISOL Spiral/CIME Fragmentation LISE/SISSI LIRAT FULIS

Mesures de masses

Masse :

- Une des première information expérimentale
- Quantité fondamentale \rightarrow modèle en couche
- Mise en évidence de changements de structure :
 - hécessité force à 3 corps
 - couplage au continuum près des driplines
 - modification fermetures de couches
 - halos

Structure en couche & nombres magiques → un outil pour sonder l'interaction nucléon-nucléon

interaction à 3 corps

Schematic picture of twovalence-neutron interaction induced from 3N force

interaction proton-neutron

interaction spin-orbite

 Interactions fondamentales
 Astrophysique nucléaire
o Structure
 Mécanismes de réaction
 Noyaux Super Lourds

Mesure de temps-de-vie dans 62,64Fe

Motivation : contraindre l'interaction nucléaire au voisinage du ⁶⁸Ni sur le chemin du ⁷⁸Ni

> Rôle de la forte interaction π -v dans l'apparition de la collectivité (déformation) des noyaux de masse moyenne

Méthode : mesure temps-de-vie du premier état excité [dans le domaine (1-10 ps)]

L'évolution de l'intensité des composantes rapide et lente en fonction de la distance du ralentisseur donne une mesure "modèle indépendant" du temps-de-vie de l'état excité → extraction de la probabilité de

transition réduite B(E2)

DIAMANT: 80 CsI(TI)

 36 Ar (111 MeV)+ 58 Ni \rightarrow 94 Pd*

EXOGAM: 11 Clovers Mur de neutrons: 50 scintillateurs liquide

- Evolution de l'incompressibilité de la matière nucléaire avec l'isospin
- Quelles sont les contraintes expérimentales venant des excitations nucléaires sur l'équation d'état ?
- Utile pour décrire l'effondrement du cœur des supernovae
- Existe-t-il de nouveaux modes d'excitations propres aux noyaux exotiques (soft monopole) ?

 Interactions fondamentales Astrophysique nucléaire Structure Mécanismes de réaction Noyaux Super Lourds 	 Stable CSS ISOL Spiral/CIME Fragmentation LISE/SISSI 	o LISE o SPEG o VAMOS o LIRAT o FULIS	 Exogam Château d Must2/Tia Maya/TPO LPC Trap INDRA 	de cristal iaRa 'C	C. Monrozeau <i>et al.,</i> Phys.	Rev. Lett. 100 (2008)04250:
Giant resonances	in unstable nucle	ei				282
Noyaux Exotiques : - Cinématique inverse - Faibles taux de prod	e avec énergie de recul fa uction	aible - 📘		Utilisat - faible so - cible ép	ion d'une Cible Active : euil de détection baisse	MAYA

 Première mesure des ISGMR et ISGQR dans un noyau instable ⁵⁶Ni : ⁵⁶Ni + d → d' + ⁵⁶Ni*

 Interactions fondamentales Astrophysique nucléaire Structure Mécanismes de réaction Noyaux Super Lourds 	 Stable CSS ISOL Spiral/CIME Fragmentation LISE/SISSI 	o LISE o SPEG o VAMOS o LIRAT o FULIS	 Exogam Château de cristal Must2/TiaRa Maya/TPC LPC Trap INDRA 	
Etude de la radio	activité 2 protons	5		
	82	114	Coulomb (+ centrifugal) barrier	

Développement d'une TPC (Chambre à Projection Temporelle)

Radioactivité 2-protons

- → limite d'existence et masses (au-delà de la « drip-line ») Q-values des transitions
- → structure nucléaire
 - énergies, temps-de-vie, configuration d'états
- \rightarrow appariement
 - corrélations en énergie and angulaire des protons
- → effet tunnel
 - descriptions théoriques

0.5

0

20 40 60 80 100 120 140 160 180

 θ_{pp} (deg)

expériences pionnières

- \rightarrow Etudes de structure à la limite d'existence
- \rightarrow distribution angulaire comme sonde du contenu de la fonction d'onde
 - Besoin de davantage de statistique
 - Besoin d'autres cas pour tester les modèles

0.4

0.2

Fermi spheres calculation

a=0.75

α=0.25 a=0 (Full stopping) T F T T F T T T T T T 20

α=0.5

10

α=1 (Full transparency)

30

R. =

40

α P_{rel}

50

60

70

90

Incident Energy (A.MeV)

100

110

80

 Interactions fondamentales 	
 Astrophysique nucléaire 	
o Structure	
 Mécanismes de réaction 	
 Noyaux Super Lourds 	

 Stable CSS ISOL Spiral/CIME Fragmentation LISE/SISSI 	o LISE o SPEG o VAMOS o LIRAT o FULIS
--	---

CAR6€ST

SI3E DISCRIBUTIONS

landest cluster

si3€ ©f

o Interactions fondamentales

 \rightarrow Contraintes sur interaction spin-orbite et le "gap" Z=114.

Chatillon et al., Eur. Phys. J. A 30(2006)397

Advantage of the X-ray fluorescence technique with respect to the blocking technique:

- No need of single crystals as a target
- Possibility to use isotopic targets

Possibility to scan the island of stability in Z and N