





# La physique auprès du GANIL et Spiral1

morceaux choisis 2008-2012

Conseil Scientifique de l'IN2P3 - 31 janvier 2013

Stéphane Grévy - CENBG





### Les grandes questions adressées au GANIL par la communauté de Physique Nucléaire

# **THEMATIQUES**

- Interactions fondamentales > Quelles sont les limites du Model Standard?
- Astrophysique nucléaire
- > Comment sont synthétisés les éléments chimique dans l'Univers ? Quels sont les mécanismes d'explosion des étoiles en SuperNovae ?

- Structure
- **Novaux Super Lourds**
- Mécanismes de réaction
- > Comment évoluent les effets de couches (nombres magigues, formes) ? Quelles sont les limites d'existence en isospin et masse
- > Quelle est l'équation d'état de la matière nucléaire Comment parvenir à une description microscopique des processus de fusion, fission et collisions nucléaires rapprochées?



# Les grandes questions adressées au GANIL par la communauté de Physique Nucléaire

**THEMATIQUES** 

- Interactions fondamentales
- Astrophysique nucléaire
- Structure
- Noyaux Super Lourds
- Mécanismes de réaction



# Les grandes questions adressées au GANIL par la communauté de Physique Nucléaire

**THEMATIQUES** 

- Interactions fondamentales
- Astrophysique nucléaire
- Structure
- Noyaux Super Lourds
- Mécanismes de réaction

- Stable CSS
- ISOL Spiral1/CIME



- Fragmentation LISE/SISSI

SPECTROMETRES

- LISE
- SPEG
- VAMOS
- LIRAT
- FULIS



HRS **S3** 

**DESIR** 

SYST. DETECTION

- Exogam
- Château de cristal
- Must2/TiaRa
- Maya/TPC
- LPC Trap
- INDRA



Exogam2/AGATA

**PARIS** 

**GASPARD** 

**ACTAR** 

**PIPERADE** 

**FAZIA** 











Exogam
Château de cristal
Must2/TiaRa
Maya/TPC
LPC Trap
INDRA



Mécanismes de réaction

Noyaux Super Lourds

o Structure

ExogamChâteau de cristal o Must2/TiaRa o Maya/TPC o LPC Trap o INDRA

La décroissance nucléaire eta pour tester le secteur electrofaible du Standard Model

#### **Motivations:**

- Courants exotiques dans l'interaction faible (test de la théorie V-A) Etude des corrélations angulaires dans les coïncidences β-ions
- > Test de la matrice CKM

Décroissance des noyaux miroirs → V<sub>ud</sub> (alternative aux transitions de Fermi  $0^+ \rightarrow 0^+$ )



Décroissance  $\beta$  = processus semi leptonique gouverné par l'interaction faible

Taux de décroissance:  $W(E,\theta) \neq W(E)[1 + \frac{v_e}{c}\cos(\theta)]$ 

$$a(C_{V},C_{A},C_{S},C_{T}) = \frac{\left[\left|C_{V}\right|^{2} + \left|C_{V}\right|^{2} - \left|C_{S}\right|^{2} + \left|C_{S}\right|^{2}\right] M_{F}^{2} + \frac{1}{3} \left[\left|C_{T}\right|^{2} + \left|C_{T}\right|^{2} - \left|C_{A}\right|^{2}\right] M_{GT}^{2}}{\left[\left|C_{V}\right|^{2} + \left|C_{V}\right|^{2} + \left|C_{S}\right|^{2}\right] M_{F}^{2} + \left[\left|C_{T}\right|^{2} + \left|C_{T}\right|^{2} + \left|C_{A}\right|^{2}\right] M_{GT}^{2}} = \frac{\left|C_{V}\right|^{2} M_{F}^{2} + \left|C_{A}\right|^{2} M_{GT}^{2}}{\left|C_{V}\right|^{2} + \left|C_{V}\right|^{2} + \left|C_{S}\right|^{2} + \left|C_{S}\right|^{2}\right] M_{F}^{2}} = 1 \text{ (SM)}$$

$$a_{F} = \frac{\left[\left|C_{V}\right|^{2} + \left|C_{V}\right|^{2} - \left|C_{S}\right|^{2} - \left|C_{S}\right|^{2}\right] M_{F}^{2}}{\left[\left|C_{V}\right|^{2} + \left|C_{V}\right|^{2} + \left|C_{S}\right|^{2} + \left|C_{S}\right|^{2}\right] M_{F}^{2}} = 1 \text{ (SM)}$$

$$a_{GT} = \frac{\frac{1}{3} \left[\left|C_{T}\right|^{2} + \left|C_{T}\right|^{2} - \left|C_{A}\right|^{2} - \left|C_{A}\right|^{2}\right] M_{GT}^{2}}{\left[\left|C_{T}\right|^{2} + \left|C_{T}\right|^{2} + \left|C_{A}\right|^{2} + \left|C_{A}\right|^{2}\right] M_{GT}^{2}} = 1/3 \text{ (SM)}$$



Mécanismes de réaction

Noyaux Super Lourds

o LISE o SPEG o VAMOS o LIRAT

o FULIS

Exogam
Château de cristal
Must2/TiaRa
Maya/TPC
LPC Trap
INDRA

Mountford *et al.,* Phys. Rev. C85(2012)022801 Assie *et al.,* Phys. Lett. B721(2012)198

# Elastic resonant diffusion with <sup>17</sup>Ne and <sup>18</sup>F beams

Perspectives: upgrade S1, S2

#### **Motivations:**

- ➤ Certaines sections efficaces sont particulièrement importantes pour les processus stellaires Utilisation de la diffusion élastique résonante → exploration d'un large domaine en énergie d'excitation
- cycle CNO: destruction d'un émetteur γ cosmique



Nouvelle résonance très large

 $\rightarrow$  impact important sur les novae (moins de <sup>18</sup>F  $\rightarrow$  moins de rayonnement γ)

• nucléosynthèse (processus r) : Etude de la capture 2p





→ nouvel état observé dans ¹8Na : la décroissance 2p se fait via la traine de la résonnace

- o Interactions fondamentales
- Astrophysique nucléaire
   Structure
- o Mécanismes de réaction Noyaux Super Lourds
- Stable CSSISOL Spiral/CIMEFragmentation LISE/SISSI
- o LISE o SPEG o VAMOS o LIRAT o FULIS
- Exogam
  Château de cristal
  Must2/TiaRa
  Maya/TPC
  LPC Trap
  INDRA

#### Mesures de masses

#### Masse:

- Une des première information expérimentale
- Quantité fondamentale → modèle en couche
- Mise en évidence de changements de structure :
  - > nécessité force à 3 corps
  - > couplage au continuum près des driplines
  - > modification fermetures de couches
  - > halos





$$B\rho = \frac{M}{Q} \frac{L}{T}$$

T : Temps de vol → Déterminé à 10<sup>-5</sup> près.

L : Distance de vol (82m).

Rigidité magnétique.

Etat de charge.

- o Interactions fondamentales
- o Stable CSS o Astrophysique nucléaire o Structure o ISOL Spiral/CIME
  o Fragmentation LISE/SISSI
- o LISE o SPEG o VAMOS
- ExogamChâteau de cristal
- Gaudefroy et al., Phys. Rev. Lett 109(2012)202503

o Mécanismes de réaction Noyaux Super Lourds

- o LIRAT o FULIS
- o Must2/TiaRa o Maya/TPC o LPC Trap o INDRA

- 16 Novaux étudiés.
- Premières mesures pour <sup>19</sup>B. <sup>22</sup>C. <sup>29</sup>F et <sup>31</sup>Ne.

| , s, i se i se   |                  |                  |                  |                  |                  |                        |                    |                  |                  |                  |                  |                 |      |                  |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------------|--------------------|------------------|------------------|------------------|------------------|-----------------|------|------------------|
| <sup>20</sup> Ne | <sup>21</sup> Ne | <sup>22</sup> Ne | <sup>23</sup> Ne | <sup>24</sup> Ne | <sup>25</sup> Ne | <sup>26</sup> Ne       | <sup>27</sup> Ne   | <sup>28</sup> Ne | <sup>29</sup> Ne | <sup>30</sup> Ne | <sup>31</sup> Ne | 32Ne            | Em E | <sup>34</sup> Ne |
| <sup>19</sup> F  | <sup>20</sup> F  | <sup>21</sup> F  | <sup>22</sup> F  | <sup>23</sup> F  | <sup>24</sup> F  | <sup>25</sup> <b>F</b> | <sup>26</sup> F    | <sup>27</sup> F  | <b>2</b>         | <sup>29</sup> F  | ZWZ<br>ZWZ       | <sup>31</sup> F |      |                  |
| <sup>18</sup> O  | <sup>19</sup> O  | <sup>20</sup> O  | 210              | <sup>22</sup> O  | <sup>23</sup> O  | <sup>24</sup> O        |                    |                  |                  |                  |                  |                 |      |                  |
| <sup>17</sup> N  | <sup>18</sup> N  | <sup>19</sup> N  | <sup>20</sup> N  | <sup>21</sup> N  | <sup>22</sup> N  | <sup>23</sup> N        | 180 Noyaux Stables |                  |                  |                  |                  |                 |      |                  |
| <sup>16</sup> C  | 17 <b>C</b>      | <sup>18</sup> C  | <sup>19</sup> C  | <sup>20</sup> C  | <b>**</b>        | <sup>22</sup> C        | Н                  | <sup>20</sup> C  | М                | asses            | amél             | liorée          | :S   |                  |
| <sup>15</sup> B  | ZWZ<br>ZWZ       | <sup>17</sup> B  | 744<br>744       | <sup>19</sup> B  |                  | 1                      |                    | 220              | No.              | المريد           | les ma           | 2000            |      |                  |
| <sup>14</sup> Be |                  |                  |                  | 1                |                  | N=16                   |                    |                  | INC              | Juven            | ES 1116          | asses           |      |                  |
|                  | N=14             |                  |                  |                  |                  |                        |                    |                  | Noyaux non liés  |                  |                  |                 |      |                  |

#### Perspectives: Spiral2, S3 / Traps @ DESIR



#### Zoom sur le <sup>22</sup>C:

 $ightharpoonup S_{2n} + Rayon \rightarrow noyau à halo le plus lourd$ 



- > noyau dit "borroméen" : n-n et <sup>21</sup>C non liés
  - → laboratoire pour étude de la force à 3 corps



- > Description par des méthodes microscopiques demandera des améliorations :
  - couplage au continuum
  - comportement asymptotique réaliste des fonctions d'ondes



- Stable CSSISOL Spiral/CIMEFragmentation LISE/SISSI
- LISESPEGVAMOSLIRAT

o FULIS

Exogam
Château de cristal
Must2/TiaRa
Maya/TPC
LPC Trap
INDRA

2013:

Mécanismes de réaction
 Noyaux Super Lourds







Structure en couche & nombres magiques -> un outil pour sonder l'interaction nucléon-nucléon

interaction à 3 corps









7/2(l=3)

interaction WBP modifiée :

→ gap N=20 réduit de 0.7 MeV



E. (keV)



o LISE o SPEG

o LIRAT

o FULIS

o VAMOS

Gaudefroy et al., Phys. Rev. Lett 97(2006)092501 Bastin et al., Phys. Rev. Lett 99(2007)202503 Force et al., Phys. Rev. Lett 105(2010)102501

Spiral2, S3 / GASPARD, PARIS...

<sup>48</sup>Ni - <sup>78</sup>Ni - <sup>100</sup>Sn - <sup>132</sup>Sn

Perspectives:

N=28: Premier exemple de disparition de magicité dans une fermeture de couche de spin-orbite





#### Mise en évidence :

- importance des corrélations proton-neutron: force tenseur
- → effet similaire au spin-orbite
- > effet de la densité sur la modification de l'interaction spin-orbite

- Interactions fondamentales
- o Astrophysique nucléaire o Structure o Mécanismes de réaction

Noyaux Super Lourds

- o Stable CSS o ISOL Spiral/CIME o Fragmentation LISE/SISSI
- o LISE o SPFG o VAMOS o LIRAT o FULIS
- ExogamChâteau de cristalMust2/TiaRaMaya/TPC o LPC Trap o INDRA

# Mesure de temps-de-vie dans 62,64Fe

#### Motivation: contraindre l'interaction nucléaire au voisinage du <sup>68</sup>Ni sur le chemin du <sup>78</sup>Ni

 $\triangleright$  Rôle de la forte interaction  $\pi$ -v dans l'apparition de la collectivité (déformation) des noyaux de masse moyenne

# Méthode: mesure temps-de-vie du premier état excité [dans le domaine (1-10 ps)]







L'évolution de l'intensité des composantes rapide et lente en fonction de la distance du ralentisseur donne une mesure "modèle indépendant" du temps-de-vie de l'état excité

→ extraction de la probabilité de transition réduite B(E2)

- o Interactions fondamentales
- o Astrophysique nucléaire o Structure
- o Mécanismes de réaction Noyaux Super Lourds
- o Stable CSS o ISOL Spiral/CIME
- o LISE o SPEG o Fragmentation LISE/SISSI o VAMOS o LIRAT o FULIS
- Exogam
  Château de cristal
  Must2/TiaRa
  Maya/TPC
  LPC Trap
  INDRA

# Mesure de temps-de-vie dans <sup>62,64</sup>Fe





Ljungvall et al., Phys. Rev. C81(2010)061301(R)





#### Dans le cadre du modèle en couches :

- l'espace de valence fp n'est suffisant
- L'orbitale  $g_{9/2}$  est responsable de l'apparition de la collectivité
- → Comparable à l'"îlot d'inversion" connu dans les noyaux légers

- o Interactions fondamentales
- o Astrophysique nucléaire o Structure
- o Mécanismes de réaction Noyaux Super Lourds
- o Stable CSS o ISOL Spiral/CIME o Fragmentation LISE/SISSI
- o LISE o SPEG o VAMOS o LIRAT o FULIS
- Exogam
  Château de cristal
  Must2/TiaRa
  Maya/TPC
  LPC Trap
  INDRA

- une nouvelle superfluidité nucléaire?
- <sup>100</sup>Sn: terminaison de la ligne N=Z et

noyau le plus lourd doublement magique :

- «Laboratoire» idéal pour les interactions neutron proton
- Différentes formes d'appariement prédites:



















o Astrophysique nucléaire o Structure o Mécanismes de réaction

Noyaux Super Lourds

o Fragmentation LISE/SISSI

o LISE o SPEG o VAMOS o LIRAT o FULIS

Exogam
Château de cristal
Must2/TiaRa
Maya/TPC
LPC Trap
INDRA

# une nouvelle superfluidité nucléaire?







- o Interactions fondamentales
- o Astrophysique nucléaire o Structure
- o Mécanismes de réaction Noyaux Super Lourds
- o Stable CSS o ISOL Spiral/CIME
  o Fragmentation LISE/SISSI
- o LISE o SPEG o VAMOS o LIRAT o FULIS
- Exogam
  Château de cristal
  Must2/TiaRa
  Maya/TPC
  LPC Trap
  INDRA

#### Etude des Résonances Géantes ...







# dans les noyaux instables

- Evolution de l'incompressibilité de la matière nucléaire avec l'isospin
- Quelles sont les contraintes expérimentales venant des excitations nucléaires sur l'équation d'état ?
- Utile pour décrire l'effondrement du cœur des supernovae
- Existe-t-il de nouveaux modes d'excitations propres aux noyaux exotiques (soft monopole)?

- Interactions fondamentales
   Astrophysique nucléaire
   Structure
- Stable CSSISOL Spiral/CIMEFragmentation LISE/SISSI
- LISESPEGVAMOSLIRAT
- Exogam
  Château de cristal
  Must2/TiaRa
  Maya/TPC
  LPC Trap
  INDRA
- C. Monrozeau et al., Phys. Rev. Lett. 100 (2008)042501

- Mécanismes de réaction
   Noyaux Super Lourds
- o FULIS

#### Giant resonances in unstable nuclei

#### **Noyaux Exotiques:**

- Cinématique inverse avec énergie de recul faible -
- Faibles taux de production



# Utilisation d'une Cible Active :

- faible seuil de détection
- cible épaisse

Deam electrons

32 amplification wires

1024 pads

cathode

 Première mesure des ISGMR et ISGQR dans un noyau instable <sup>56</sup>Ni : <sup>56</sup>Ni + d → d' + <sup>56</sup>Ni\*





- o Interactions fondamentales
- o Astrophysique nucléaire o Structure
- o Mécanismes de réaction Noyaux Super Lourds
- o Stable CSS o ISOL Spiral/CIME o Fragmentation LISE/SISSI
- o LISE o SPEG o VAMOS o LIRAT o FULIS
- Exogam
  Château de cristal
  Must2/TiaRa
  Maya/TPC
  LPC Trap
  INDRA

# Etude de la radioactivité 2 protons









#### Radioactivité 2-protons

- → limite d'existence et masses (au-delà de la « drip-line ») Q-values des transitions
- → structure nucléaire énergies, temps-de-vie, configuration d'états
- → appariement corrélations en énergie and angulaire des protons
- → effet tunnel descriptions théoriques

#### Développement d'une TPC (Chambre à Projection Temporelle)



- LISESPEGVAMOS
- Exogam
  Château de cristal
  Must2/TiaRa
  Maya/TPC
  LPC Trap
  INDRA

- o Mécanismes de réaction Noyaux Super Lourds







Ascher et al., Phys. Rev. Lett. 107(2011)102502





- → Etudes de structure à la limite d'existence
- → distribution angulaire comme sonde du contenu de la fonction d'onde
  - Besoin de davantage de statistique
  - Besoin d'autres cas pour tester les modèles



o Interactions fondamentales Astrophysique nucléaire
 Structure

o Mécanismes de réaction

Noyaux Super Lourds

o Stable CSS o ISOL Spiral/CIME o Fragmentation LISE/SISSI

o LISE o SPEG o VAMOS o LIRAT o FULIS

ExogamChâteau de cristal Must2/TiaRaMaya/TPC o LPC Trap o INDRA

G. Lehaut et al., Phys. Rev. Lett. 104, 232701 (2010)

# Arrêt dans la matière nucléaire : un lien avec les propriétés de transport

INDRA: multi-détecteur de particules chargées pour l'étude des mécanismes de réaction

aux énergies intermédiaires

équation d'état de la matière nucléaire

énergie transverse Rapport d'isotropie R<sub>F</sub>: (=1 si isotrope) énergie parallèle





- E < 30A MeV:

- E > 30A MeV:

Régime champ moyen et dissipation à 1-corps

→ accès au paramètre de viscosité

Collisions Elastiques NN et dissipation à 2-corps  $\rightarrow$  accès au libre parcours moyen dans le milieu  $\lambda_{NN}$ 

 $\rightarrow$  accès à la section efficace nucléon-nucléon  $\sigma_{NN}$ 

- o Interactions fondamentales
- Astrophysique nucléaire
   Structure
- o Mécanismes de réaction
- o Novaux Super Lourds
- Stable CSSISOL Spiral/CIMEFragmentation LISE/SISSI
- o LISE o SPEG o VAMOS o LIRAT o FULIS
- ExogamChâteau de cristalMust2/TiaRaMaya/TPC
- o Maya/1PC o LPC Trap o INDRA

# **Deducing multifragmentation time-scales from largest fragment charge distributions**

D. Gruyer Ph.D Thesis NADRA collaboration N. Poloszajczak (GANIL) R. Botet (LPS Orsay)



(submitted to PRL (2012))





Noyaux Super Lourds

Stable CSS
 ISOL Spiral/CIME
 Fragmentation LISE/SISSI

LISESPEGVAMOSLIRATFULIS

Exogam
Château de cristal
Must2/TiaRa
Maya/TPC
LPC Trap
INDRA

# Etudes des noyaux Super Lourds



1 : Approche par la synthèse

Cas extrêmes : < 1 atome / mois

2: Approche par la spectroscopie

Vers Z=102 : quelques atome / heure



**HFB** 

- o Interactions fondamentales
- o Astrophysique nucléaire o Structure
- o Mécanismes de réaction Noyaux Super Lourds
- Stable CSSISOL Spiral/CIMEFragmentation LISE/SISSI
- o LISE o SPEG o VAMOS o LIRAT

o FULIS

- Exogam
  Château de cristal
  Must2/TiaRa
  Maya/TPC
  LPC Trap
  INDRA

# Spectroscopie $\alpha \beta \gamma du_{103}^{255}Lr$









Chatillon et al., Eur. Phys. J. A 30(2006)397





→ Contraintes sur interaction spin-orbite et le "gap" Z=114.

Mécanismes de réaction

Noyaux Super Lourds

o Structuré

o FULIS

# Mesure des temps de fission par "blocking effects"

Presque impossible de synthétiser des noyaux avec Z > 118 et des temps de faisceaux réalistes

o INDRA

Stabilité ⇔ Haute barrière de fission ⇔ Long temps de fission Recherche du maximum de stabilité par des mesures de temps de fission



Mesure de temps par la technique d'ombre dans les monocristaux

 $t_{court}/t_{long}$ : peu /beaucoup d'ions dans l'axe du cristal



 $^{208}\text{Pb} + ^{\text{nat}}\text{Ge} \rightarrow \text{Z} = 114$ 

$$^{238}U + ^{nat}Ni \rightarrow Z = 120$$

$$^{238}\text{U} + ^{\text{nat}}\text{Ge} \rightarrow \text{Z} = 124_{-}$$

Au moins 10 % des noyaux formés ont un temps de fission supérieur à 10<sup>-18</sup> s

Les noyaux Z = 120 and 124 ont été formés et ont une haute barrière de fission

- o Interactions fondamentales
- Astrophysique nucléaire
   Structure
- Mécanismes de réaction
   Noyaux Super Lourds
- Stable CSS
   ISOL Spiral/CIME
   Fragmentation LISE/SISSI
- o LISE o SPEG o VAMOS o LIRAT o FULIS
- Exogam
  Château de cristal
  Must2/TiaRa
  Maya/TPC
  LPC Trap
  INDRA

Frégeau et al., Phys. Rev. Lett. 108(2012)122701

#### Fluorescence X

#### (Reaction time from inner shell vacancy lifetime)



Lifetime of a K-vacancy ~10<sup>-18</sup>s: The number of K X rays is connected to the nucleus lifetime before fission

X ray observed in <sup>238</sup>U+<sup>64</sup>Ni at 6.6 A.MeV (M.O.Frégeau et al., PRL 2012):

- -Energy and width expected for  $X_{\kappa}$  rays from Z = 120 atoms
- X rays in coincidence with fission fragments with Z1+Z2 = 120
- Emission from a system recoiling in the beam direction (Doppler effects analysis)

Conclusion:  $X_K$  rays from Z = 120 atoms

The formed Z=120 nuclei survive longer than the lifetime of the K-vacancies of Z=120 atoms  $(10^{-18}s)$ 



Advantage of the X-ray fluorescence technique with respect to the blocking technique:

- No need of single crystals as a target
- Possibility to use isotopic targets

Possibility to scan the island of stability in Z and N