CTA - Cherenkov Telescope Array

M. Punch

i

$$
-1
$$

Brief Introduction to CTA.

CTA:

- x10 sensitivity of current instruments
- x10 energy range
- improved angular resolution and energy resolution

High-energy section: $32 \times 5-6 \mathrm{~m}$ tel. (SST) Davies-Cotton reflector (or Schwarzschild-Couder) - FOV: ~10 degrees
$10 \mathrm{~km}^{2}$ area at
multi-TeV energies

Core-energy array:
$23 \times 12 \mathrm{~m}$ tel. (MST) Davies-Cotton reflector - FOV: 7-8 degrees mCrab sensitivity in the $100 \mathrm{GeV}-10 \mathrm{TeV}$

Key Science Goals for IN2P3

- Physics of G/galactic sources with CTA and the origin of Cosmic Rays
- Acceleration in shocks and strong magnetic fields
- Production of Hadronic \& Leptonic Cosmic Rays
- Production of UHECR (AGN BH/lobes, GRB, Pulsars)
- Dark Matter Searches (indirect detection)
- Searches in Galactic Centre, Dwarf Galaxies, Clusters...
- Gamma-ray Sources as Probes of New Physics / the Universe
- Extragalactic Background Light and 1st Stars and Galaxies
- Intergalactic Magnetic Field
- Search for Lorentz Invariance Violation / Axion-like particles
- AGN extragalactic Physics
- Black Holes and their Environments
- Exploring the Disk/Jet connection

Objects observed or targets for CTA

Supernova remnants: Nature 432 (2004) 75

Microquasars:
Pulsars:
Galactic Centre:
Galactic Survey:
Starbursts:
Active Galactic Nuclei:
EBL:
Dark Matter:
Lorentz Invariance:
Cosmic Ray Electrons: PRL (2009)

Notable publications in VHE Gamma-Ray astronomy
(selection of J.Knapp, TeVPA2012)

Science 309 (2005) 746, Science 312 (2006) 1771
Science 322 (2008) 1221, Science 334 (2011) 69
Nature 439 (2006) 695
Science 307 (2005) 1839
Nature 462 (2009) 770, Science 326 (2009) 1080
Science 314 (2006) 1424, Science 325 (2009) 444
Nature 440 (2006) 1018, Science 320 (2008) 1752
PRL 97 (2006) 221102, PRL 106 (2011) 161301
PRL 101 (2008) 170402
Underlined \rightarrow HESS contribution

Link between Physics Goals and Sources

		RC prod.	RC prop.	BH nature \& variety	DM dét. indirecte (annihilation)	Cosmo. \& EBL Evol. 1ères étoiles \& galaxies	IGMF et Formation de I'Univers	Structure de l'espacetemps et LIV
	SNR $\overline{-}$ Restes de Supernova		- -		1			
	MC Nuages Moléculaires							
6	Pulsars							
	PWNe Nébuleuses de Pulsar				\cdots			
	GC Centre Galactique		. . -					
	Dwarf Gal. / Glob. CI. Gal. Naines / Amas Glob.							
	Galaxy Clusters Amas de Galaxies							
	Starburst galaxies Gal. à flambée etoiles							
	GRB Sursauts Gamma							
	AGN Noyaux Actifs de Galaxie					01	$0!$	
	Mesure direct des RC chargées							

CTA, the great leap forwards: characteristics

- Enormous improvement over current installations on all characteristics!

Performance

Energy	Area	Ang. Res	En. Res	FoV
TeV	km^{2}	arc min $\%$	\circ	
0.03	0.003	12	30	$4-5$
0.3	0.1	4	13	$6-8$
3	1.	2	8	$7-9$
30	3.	1.5	7	$8-10$

Improvement (relative to HESS) :	
Diffuse continuum:	$\approx \times 5$
Angular resolution for point sources:	$\approx \times 2$
FoV for surveys:	$\approx \times 2$
Energy resolution for lines:	$\approx \times 1.5$
All-sky survey; point-like emission-line sources:	$\approx \times 30$
Pointed observation of a 0.5° continuum source:	$\approx \times 5$

CTA, the great leap forwards: sensitivity

- Comparisons with FermiLAT,
- Overlapping energy range

CTA, the great leap forwards: angular resol.

H.E.S.S.

@ CTA resolution

CTA, for same exposure

@ HESS
resolution

Astrophysics Sources: Gamma Ray production

Astrophysics Sources: Gamma Ray production

Galactic Sources: SNRs

- SNRs as sources of Galactic CR?
- Now, have 6-7 SNR sample
- Open questions on diffusive shock acceleration
- CR spectrum universality?
- Inconclusive/Current status
- e.g. Tycho, dominant hadronic
- e.g. RX J1713, dominant leptonic contribution
- Simulations of SNR population
- If all shine ~ 3000 yr at VHE $\rightarrow \sim 60$ VHE shells in Galaxy!
- CTA
- 20-55 detectable, with 7-12 resolvable (config-I)
$-2 x$ improvement in resolution $\rightarrow 2 x$ resolvable SNRs
- CTA will increase sample, zoom-in on shocks, allow to estimate SNR contribution to G-CR

"ֻ

Galactic Sources: SNRs

- SNRs as sources of Galactic CR?
- Now, have 6-7 SNR sample
- Open questions on diffusive shock acceleration
- CR spectrum universality?
- Inconclusive/Current status
- e.g. Tycho, dominant hadronic
- e.g. RX J1713, dominant leptonic contribution
- Simulations of SNR population
- If all shine ~ 3000 yr at VHE $\rightarrow \sim 60$ VHE shells in Galaxy!
- CTA
- 20-55 detectable, with 7-12 resolvable (config-I)
$-2 x$ improvement in resolution $\rightarrow 2 x$ resolvable SNRs
- CTA will increase sample, zoom-in on shocks, allow to estimate SNR contribution to G-CR

> CTA simulation (50h) RX J1713.7-3946 as seen by XMM

HESS Skymaps

RCW 86

"Galactic" Sources: SNRs+MCs, Pevatrons, Starbursts

- SNR - MC associations:

Correlation with molecular material (and atomic gas) hints at hadronic emission (W28, W51C, IC 443, W44), see also Galactic Centre ridge

- With CTA sensitivity, may be able to detect passive clouds (only lit by CR from local "sea") \rightarrow CTA can probe the Galactic distribution of CR

- Starburst galaxies:

CTA can probe production / diffusion of CR in nearby Starbursts (e.g. NGC 253, M 82)

- Pevatrons: very young SNRs (at the beginning of the Sedov phase), strongly favoured for PeV particle acceleration.
- Acting as Pevatrons for a short time \rightarrow expect few objects in the galaxy
- CTA can search for these sources of CR at the "knee"

Galactic Sources: PWNe, Pulsars, \& Gamma-Binaries

- PWNe most numerous category (~30)
- Young (<10kyr), large spin-down power, relativistic winds
- Energy dependent morphology, larger in VHE than in X-rays,
VHE spectral softening with distance \rightarrow history of electron cooling
- CTA can reproduces these results in 5h (vs. 50h), \& to larger extension \rightarrow probe max. size, understand dark srcs
- CTA sensitivity
\rightarrow if PWNe shine for 10,000 years,
~ 200 will be detected in the Galaxy
- Production of positrons
\rightarrow foreground for DM from nearby PWNe
- Current Gamma-binaries best explained as "periodic PWNe" \rightarrow good laboratory for examining behaviour

K3 \& Rabbit

Galactic Sources: PWNe, Pulsars, \& Gamma-Binaries

- PWNe most numerous category (~30)
- Young (<10kyr), large spin-down power, relativistic winds
- Energy dependent morphology, larger in VHE than in X-rays, VHE spectral softening with distance \rightarrow history of electron cooling
- CTA can reproduces these results in 5h (vs. 50h), \& to larger extension \rightarrow probe max. size, understand dark srcs
- CTA sensitivity
\rightarrow if PWNe shine for 10,000 years,
~ 200 will be detected in the Galax
- Production of positrons
\rightarrow foreground for DM from nearby PWN
- Current Gamma-binaries best explained as "periodic PWNe" \rightarrow good laboratory for examining behavii (\hat{y})

Galactic Sources: PWNe, Pulsars, \& Gamma-Binaries

- Pulsars, large population (117) found by Fermi
- Surprising VHE emission discovered from

Crab Pulsar by VERITAS, MAGIC implying Power-law spectrum (no exp. cut-off)

- Pulsar magnetosphere at $r>10$ stellar radii (preferred outer gap models)
- Cold ultra-relativistic wind at r>20 $r_{\text {Lc }}$
- CTA can reproduce these results in 1 h , and detect the spectrum up to 1 TeV
- CTA can also study
the recently-discovered Crab Flares
- CTA could detect all Fermi pulsars, if similar spectral behaviour as Crab, or

46-66\% of Fermi pulsars, if they follow a Broken Power Law

- CTA results will boost our understanding of particle acceleration in Pulsars

Crab Pulsar, P1+P2

Galactic Sources: The Galactic Centre

- GC, complex region
- Central source (SBMB?)
- Surrounding ridge 150pc, diffuse emission tracing matter

Supernova Remnant G0.9+0.1

HESS J1745-290 (The Galactic Centre)

Emission along the Galactic Plane

CTA skymap simulation for GC region: If CRs distributed uniformly in central 200 pc , (matter distribution from Herschel, Molinari et al 2011), after subtraction of central source.

CTA could distinguish between Molecular Clouds "lit-up" by a source of RCs (exploding 10kyr previously), and electon acceleration by PWNe hidden in clouds

DM searches:
 in Galactic Centre or with Galactic halo

- DM annihilation
produces also gamma-rays
- Can search for signature, over a range of mass, x-section
- Note, need to understand GC astrophysics v. well, CTA angular resolution essential for possibility to detect GC DM

$$
\frac{\mathrm{d} \Phi\left(\Delta \Omega, E_{\gamma}\right)}{\mathrm{d} E_{\gamma}}=\mathrm{B}_{\mathrm{F}} \cdot \frac{1}{4 \pi} \underbrace{\frac{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}{2 m_{\chi}^{2}} \sum_{i} \mathrm{BR}_{i} \frac{\mathrm{~d} N_{\gamma}^{i}}{\mathrm{~d} E_{\gamma}}}_{\text {Particle Physics }} \cdot \underbrace{\widetilde{J}(\Delta \Omega)}_{\text {Astrophysics }}
$$

Dwarf Spheroidal Galaxies, Clusters

- About 23 D-Sph.G:
- DM dominated, mass-light ratios > 100
- "classical", 100-1000 stars, DM profiles (well) determined (stellar velocity dispersion measurements)
- ultra-faint, 10s stars, nature under debate
- Advantages
- nearby < $100 \mathrm{kpc} \rightarrow$ strong signal
- clean of background, limited uncertainties
- Currently, 1-2 orders of magnitude out of reach of Fermi, VERITAS, HESS
- \rightarrow CTA sensitivity essential for possibility of detection of DM in D-Sph.

Fermi dwarf spheroidal and CTA Galactic centre searches are complementary

Fundamental Physics: Search for Lorentz Invariance Violation

- Distant AGNs or GRBs as probes, search for timing effects vs. energy $\Delta t \simeq$
- Need large samples to understand / disentangle with $\alpha=1$ or 2 effects from astrophysics
- Also, search possible with Pulsars (closer but faster)
- CTA timing resolution / sensitivity essential to test quadratic or higher-order dependencies

Strong limit

$$
\mathrm{E}_{\mathrm{QG}, 1}=\xi_{1} \mathrm{E}_{\text {Planck }}
$$

on linear term
from Fermi

$$
\xi_{1}>1.2
$$

(LAT+GBM)

$$
\Delta t \simeq
$$

Fundamental Physics: Search for Lorentz Invariance Violation

- Distant AGNs or GRBs as probes, search for timing effects vs. energy $\Delta t \simeq$
- Need large samples to understand / disentangle effects from astrophysics
- Also, search possible with Pulsars (closer but faster)
- CTA timing resolution / sensitivity essential to test quadratic or higher-order dependencies

$$
\Delta t \simeq\left(\frac{\Delta E}{\xi_{\alpha} E_{\mathrm{Pl}}}\right)^{\alpha} \frac{L}{c}
$$

HESS, AGN PKS 2155-304

CTA, simulation with

Fundamental Physics: Measurements of EBL, light from 1st Stars \& Galaxies

- EBL, redshifted light from

1st stars \& galaxies (esp. Pop. III stars)

- Direct measurement difficult due to foregrounds (Zodiacal light, instrument heat ...)
- Measurement possible with large sample of AGNs using spectral modification of ensemble
- Need to understand overall astrophysical spectra of the sources
- CTA energy resolution (spectra) and sensitivity (for large sample) essential
- CTA could provide
measurement of evolution of EBL over time, so measure evolution of early Universe

The Gamma-Ray Horizon $\gamma_{V H E}+\gamma_{\ldots} \rightarrow e^{+} e^{-}$

- AGNs: disk/torus, jet, particle acceleration \& gamma-ray production
- Possible location for UHECR production (radio lobes, BH itself)
- Currently ~ 40 AGNs, redshift $z<\sim 0.6$
- CTA will expand to ~170 AGNs, also increasing the low-sample AGN classes (FQRQ,radio galaxies), and increase the distance range to $\mathrm{z} \sim 2$!
- Population studies will increase understanding of the production processes for VHE particles

Simulation of the CTA extragalactic sky \& red-shift distribution

CTA can test "unified scheme" of ${ }^{48}$ AGN classification

LBL:powerful, substantial external radiation fields IBL: in between HBL:low power, weak external radiation fields

- Timing and spectral properties,
especially multiwavelength (MWL) observations
\rightarrow clues on production processes aceleration \& cooling times, time evolution of shocks \& turbulence
- CTA has much finer timing resolution than currently
- Correlations with X-rays, radio ? "Orphan flares" ?
\rightarrow information on the nature of the production
- CTA angular resolution, for nearby radiogalaxies

CTA should be able to resolve Cen A

Fermi PSF at 10 GeV
CTA PSF at 100 GeV (≥ 2 images)
CTA PSF at 300 GeV (≥ 10 images)

CTA:

- Huge science potential (for a moderate price)
- Offers an attractive mix of discovery potential \& a wealth of "guaranteed" good physics
- Astrophysics of several categories of sources needed to understand evolution of our Galaxy \& Universe
- Fundamental physics discovery potential (Dark Matter, LIV, ALPs, EBL, IGMF, Cosmology ...), strongly intertwined with Astrophysics
- CTA is almost production ready, no major technical problems
- Strong international support (scientists \& funding agencies)
... a new project in Astroparticle Physics
- CTA will considerably advance knowledge

