

- x10 sensitivity of current instruments
- x10 energy range

CTA:

 improved angular resolution and energy resolution

3 classes of telescope size \rightarrow overlapping en. ranges North – South sites \rightarrow all-sky coverage

Cta therenkov telescope array Key Science Goals for IN2P3

- Physics of G/galactic sources with CTA and the origin of Cosmic Rays
 - Acceleration in shocks and strong magnetic fields
 - Production of Hadronic & Leptonic Cosmic Rays
 - Production of UHECR (AGN BH/lobes, GRB, Pulsars)
- Dark Matter Searches (indirect detection)
 - Searches in Galactic Centre, Dwarf Galaxies, Clusters...
- Gamma-ray Sources as Probes of New Physics / the Universe
 - Extragalactic Background Light and 1st Stars and Galaxies
 - Intergalactic Magnetic Field
 - Search for Lorentz Invariance Violation / Axion-like particles
- AGN extragalactic Physics
 - Black Holes and their Environments
 - Exploring the Disk/Jet connection

Cta therenkov telescope array Objects observed or targets for CTA

Supernova remnants:	<u>Nature</u> 432 (2004) 75	Cluster BIN EL Lac (class unclear) WR
Microquasars:	Science 309 (2005) 746, Science 312 (2006) 1	.771
Pulsars:	Science 322 (2008) 1221, Science 334 (2011)	69
Galactic Centre:	<u>Nature</u> 439 (2006) 695	
Galactic Survey:	<u>Science</u> 307 (2005) 1839	
Starbursts:	Nature 462 (2009) 770, <u>Science</u> 326 (2009) 10	080
Active Galactic Nuclei:	Science 314 (2006) 1424, Science 325 (2009)	444
EBL:	Nature 440 (2006) 1018, Science 320 (2008)	1752
Dark Matter:	PRL 97 (2006) 221102, PRL 106 (2011) 16130)1
Lorentz Invariance:	PRL 101 (2008) 170402	
Cosmic Ray Electrons:	PRL (2009)	<u>Underlined</u> \rightarrow HESS contribution

Cta terenkov telescope array Link between Physics Goals and Sources

	RC prod.	RC prop.	BH nature & variety	DM dét. indirecte (annihilation)	Cosmo. & EBL Evol. 1ères étoiles & galaxies	IGMF et Formation de l'Univers	Structure de l'espace- temps et LIV
SNR - Restes de Supernova	~			×			
MC - Nuages Moléculaires		~					
Pulsars	~						v !
PWNe - Nébuleuses de Pulsar	~			×			
GC - Centre Galactique	~		~	v !			
Dwarf Gal. / Glob. Cl. - Gal. Naines / Amas Glob.				V !			
Galaxy Clusters - Amas de Galaxies	~			v !			
Starburst galaxies - Gal. à flambée etoiles		~					
GRB - Sursauts Gamma	~						~ !
AGN - Noyaux Actifs de Galaxie	~		~		~ !	~ !	✓!
Mesure direct des RC chargées		~					

CTA, the great leap forwards: characteristics

• Enormous improvement over current installations on all characteristics!

Ang.

Res

arc min

12

4 2

1.5

En.

Res

%

30

13

8

7

Improvement (relative to HESS) :

Diffuse continuum:	≈ x 5
Angular resolution for point sources:	≈ x 2
FoV for surveys:	≈ x 2
Energy resolution for lines:	≈ x 1.5
All-sky survey; point-like emission-line sources:	≈ x 30
Pointed observation of a 0.5° continuum source:	≈ x 5

Performance

Area

km²

0.1

1.

3.

0.003

Energy

TeV

0.03

0.3

3

30

a CTA, the great leap forwards: sensitivity

CTA, the great leap forwards: angular resol. herenkov telescope arrav

Astrophysics Sources: Gamma Ray production

Astrophysics Sources:

Gamma Ray production

Galactic Sources: SNRs

- SNRs as sources of Galactic CR?
 - Now, have 6-7 SNR sample
 - Open questions on diffusive shock acceleration
- CR spectrum universality?
- Inconclusive/Current status
 - e.g. Tycho, dominant hadronic
 - e.g. RX J1713, dominant leptonic contribution
- Simulations of SNR population
 - If all shine ~3000 yr at VHE $\rightarrow~$ ~60 VHE shells in Galaxy!
- **CTA**
 - 20-55 detectable, with 7-12 resolvable (config-I)
 - 2x improvement in resolution \rightarrow 2x resolvable SNRs
- CTA will increase sample, zoom-in on shocks, allow to estimate SNR contribution to G-CR

ta nkov telescope array Galactic Sources: SNRs

- SNRs as sources of Galactic CR?
 - Now, have 6-7 SNR sample
 - Open questions on diffusive shock acceleration
- CR spectrum universality?
- Inconclusive/Current status
 - e.g. Tycho, dominant hadronic
 - e.g. RX J1713, dominant leptonic contribution
- Simulations of SNR population
 - If all shine ~3000 yr at VHE \rightarrow ~60 VHE shells in Galaxy!

Fermi

10¹⁰

10¹²

10⁸

• **CTA**

E² dN/dE (eV.cm⁻². s⁻¹)

10²

10¹

10

10⁻³

10⁻⁴

10╞

- 20-55 detectable, with 7-12 resolvable (config-I)
- 2x improvement in resolution \rightarrow 2x resolvable SNRs
- CTA will increase sample, zoom-in on shocks, allow to estimate SNR contribution to G-CR

ycho, hadronic model

 10^{2}

10⁴

10⁶

Sum

10⁻⁴

Synchrotron IC on CMB

Bremsstrahlung ℼ decay

10

iordano

٩

arXiv:1108.0

10¹⁴10¹⁵

E [eV]

VERITAS

"Galactic" Sources:

SNRs+MCs, Pevatrons, Starbursts

- SNR MC associations: Correlation with molecular material (and atomic gas) hints at hadronic emission (W28, W51C, IC 443, W44), see also Galactic Centre ridge
- With CTA sensitivity, may be able to detect passive clouds (only lit by CR from local "sea") \rightarrow CTA can probe the Galactic distribution of CR
- Starburst galaxies: CTA can probe production / diffusion of CR in nearby Starbursts (e.g. NGC 253, M 82)
- Pevatrons: very young SNRs (at the beginning of the Sedov phase), strongly favoured for PeV particle acceleration.
- Acting as Pevatrons for a short time \rightarrow expect few objects in the galaxy
- CTA can search for these sources of CR at the "knee"

 \supset

Galactic Sources:

PWNe, Pulsars, & Gamma-Binaries

- PWNe most numerous category (~30)
- Young (<10kyr), large spin-down power, relativistic winds
- Energy dependent morphology, larger in VHE than in X-rays, VHE spectral softening with distance → history of electron cooling
- CTA can reproduces these results in 5h (vs. 50h), & to larger extension → probe max. size, understand dark srcs
- CTA sensitivity
 - \rightarrow if PWNe shine for 10,000 years,
 - ~ 200 will be detected in the Galaxy
- Production of positrons
 → foreground for DM from nearby PWNe
- Current Gamma-binaries best explained as "periodic PWNe" → good laboratory for examining behaviour

Galactic Sources:

PWNe, Pulsars, & Gamma-Binaries

- PWNe most numerous category (~30)
- Young (<10kyr), large spin-down power, relativistic winds
- Energy dependent morphology, larger in VHE than in X-rays, VHE spectral softening with distance → history of electron cooling
- CTA can reproduces these results in 5h (vs. 50h), & to larger extension → probe max. size, understand dark srcs
- CTA sensitivity
 - \rightarrow if PWNe shine for 10,000 years, ~ 200 will be detected in the Galax
- Production of positrons
 → foreground for DM from nearby PWNG
- Current Gamma-binaries best explained as "periodic PWNe" → good laboratory for examining behavior

Galactic Sources:

PWNe, Pulsars, & Gamma-Binaries

- Pulsars, large population (117) found by Fermi
- Surprising VHE emission discovered from Crab Pulsar by VERITAS, MAGIC implying Power-law spectrum (no exp. cut-off)
 - Pulsar magnetosphere at r>10 stellar radii (preferred outer gap models)
 - Cold ultra-relativistic wind at r>20 r_L
- CTA can reproduce these results in 1h, and detect the spectrum up to 1 TeV
- CTA can also study the recently-discovered Crab Flares
- CTA could detect all Fermi pulsars,

if similar spectral behaviour as Crab,

or

46-66% of Fermi pulsars,

if they follow a Broken Power Law

CTA results will boost our understanding of particle acceleration in Pulsars

(P1+P2)₄₄ MAGIC Shereo, this work

(P1+P2), MAGC Stereo, It is work

(P1+P2)₀, MAG C Mono (T. Salto 2010) (P1+P2)_M Fermi-LAT (Abdo et al. 201.0)

(P1+P2)₀, Fermi-LAT (Abdo et al. 2010) (P1+P2)₀, Fermi-LAT (T. Salto 2010)

(P1+P2)_w VERITAS (Allu et al. 2011) (P1+P2)₀. Whip ple (Le mard et al., 2000)

 Nebula, MAGIC Stereo, this work Nebula, MAGIC Stereo, ICRC 2011

Nebula, Fermi-LAT (Abd o et al. 2010) tot, pulsed, OG+pairs (Meloket al. 2011)

10

Energy [GeV]

 10^{2}

10-10

10⁻¹¹

10⁻¹²

Ĩ,

[TeV cm⁻²

dN/dE

ω 10⁻¹³

 10^{-1}

Galactic Sources: The Galactic Centre

- GC, complex region
 - Central source (SBMB?)
 - Surrounding ridge 150pc, diffuse emission tracing matter

CTA skymap simulation for GC region: If CRs distributed uniformly in central 200 pc, (matter distribution from Herschel, Molinari et al 2011), after subtraction of central source.

CTA could distinguish between Molecular Clouds "lit-up" by a source of RCs (exploding 10kyr previously), and electon acceleration by PWNe hidden in clouds

DM searches:

in Galactic Centre or with Galactic halo

- DM annihilation produces also gamma-rays
- Can search for signature, over a range of mass, x-section
- Note, need to understand GC astrophysics v. well,
 CTA angular resolution essential

CTA angular resolution essential for possibility to detect GC DM

DM searches:

Dwarf Spheroidal Galaxies, Clusters

- About 23 D-Sph.G:
 - DM dominated, mass-light ratios > 100
 - "classical", 100-1000 stars,
 DM profiles (well) determined
 (stellar velocity dispersion measurements)
 - ultra-faint, 10s stars, nature under debate
- Advantages
 - nearby < 100 kpc \rightarrow strong signal
 - clean of background, limited uncertainties
- Currently, 1—2 orders of magnitude out of reach of Fermi, VERITAS, HESS …
- → CTA sensitivity essential for possibility of detection of DM in D-Sph.

Fermi dwarf spheroidal and CTA Galactic centre searches are complementary

Fundamental Physics:

Search for Lorentz Invariance Violation

Fundamental Physics:

Search for Lorentz Invariance Violation

Fundamental Physics: Measurements of EBL, light from 1st Stars & Galaxies

Mean Free Path

z=1

1 Gpc

100 Mpc

10 Mpc

1 Mpc

100 kpc -

10 kpc

- EBL, redshifted light from 1st stars & galaxies (esp. Pop. III stars)
- Direct measurement difficult due to foregrounds (Zodiacal light, instrument heat ...)
- Measurement possible with large sample of AGNs using spectral modification of ensemble
- Need to understand overall astrophysical spectra of the sources
- CTA energy resolution (spectra) and sensitivity (for large sample) essential
- CTA could provide measurement of evolution of EBL over time, so measure evolution of early Universe

The Gamma-Ray Horizon $\gamma_{VHE} + \gamma_{...} \rightarrow$

 $\mu\nu$ Whole universe visible Beamed sources, time variability 3C 279 VIR LSTS FIR Mrk 42 Precision studies of local EG sources, resolved morphology Radío MST Cen A Precision studies of M 31 galactic CR sources up to the knee SST CM

31/01/2013

- AGNs: disk/torus, jet, particle acceleration & gamma-ray production
- Possible location for UHECR production (radio lobes, BH itself)
- Currently ~ 40 AGNs, redshift z<~0.6
- CTA will expand to ~170 AGNs, also increasing the low-sample AGN classes (FQRQ,radio galaxies), and increase the distance range to z~2 !
- Population studies will increase understanding of the production processes for VHE particles

- Timing and spectral properties, especially multiwavelength (MWL) observations
 → clues on production processes aceleration & cooling times,
 - time evolution of shocks & turbulence
- CTA has much finer timing resolution than currently
- Correlations with X-rays, radio ?
 "Orphan flares" ?
 - \rightarrow information on the nature of the production
- CTA angular resolution, for nearby radiogalaxies

CTA should be able to resolve Cen A

Variability timescale, ~200s,... ~1% $R_S\,c$

Causality \rightarrow R < c_{tvar}d, \rightarrow emission region very small, & bulk motion with $\Gamma > 50$

Fermi PSF at 10 GeV CTA PSF at 100 GeV (≥2 images) CTA PSF at 300 GeV (≥10 images)

31/01/2013

- Huge science potential (for a moderate price)
- Offers an attractive mix of discovery potential & a wealth of "guaranteed" good physics
 - Astrophysics of several categories of sources needed to understand evolution of our Galaxy & Universe
 - Fundamental physics discovery potential (Dark Matter, LIV, ALPs, EBL, IGMF, Cosmology ...), strongly intertwined with Astrophysics
- CTA is almost production ready, no major technical problems
- Strong international support (scientists & funding agencies)
- ... a new project in Astroparticle Physics
- CTA will considerably advance knowledge on
 - cosmic accelerators
 - high-energy astrophysics
 - fundamental physics

