

Physique et Instrumentation à SPIRAL2

Conseil Scientifique IN2P3

Hervé Savajols (GANIL) on behalf of the SPIRAL2 Project Group & Physics Collaborations

www.ganil-spiral2.eu

Noyaux Atomiques Comportement aux extrêmes

- Accélérateurs (intensité, énergie)
- Méthodes expérimentales (Réactions, Détecteurs)

Interactions fondamentales → Quelles sont les limites du Model Standard ?

Mesures très précises de la décroissance des transitions miroirs pour tester l'hypothèse de conservation du courant vectoriel (CVC) et l'unitarité de la matrice CKM

Interactions fondamentales → Quelles sont les limites du Model Standard ?

Mesures très précises de la décroissance des transitions miroirs pour tester l'hypothèse de conservation du courant vectoriel (CVC) et l'unitarité de la matrice CKM

Dispositifs expérimentaux :

- Piège de Penning (MLLTRAP) → Masse
- Piége de Paul (LPCTRAP) $\rightarrow \beta$ -v corrélation $\rightarrow \rho$
- Station de décroissance β (BESTIOL) \rightarrow T1/2 et BR

Astrophysique nucléaire → Comment sont synthétisés les éléments chimique dans l'Univers ? → Quels sont les mécanismes d'explosion des étoiles en SuperNovae?

SPIRAL2 est particulièrement bien adaptés à l'étude Nucléosynthèses explosives

Novae classique:

Astronomie γ est sensible aux abondances isotopiques → Flux γ à 1,809 MeV dépends de la réaction ²⁵Al(p, γ)²⁶Si

Sursauts X :

Mesures directes des sections efficace : $\rightarrow^{14}O(\alpha,p)$, ¹⁸Ne(α,p) et ³⁰S(α,p) Etude de la nucléosynthèse (p,γ) ⁶⁰Zn(p,γ)⁶¹Ga [waiting point] & ¹⁰²In(p,γ)¹⁰³Sn [end-point]

Processus r:

Etudes de structure nucléaire.

- →spectroscopie, décroissance, masse, t_{1/2}, Pn
- ➔après post-accélération en vue d'effectuer des réactions secondaires, ex: ¹³⁰Cd(d,p)¹³¹Cd, et ¹³⁴Sn(d,p)¹³⁵Sn

Structure → Comment évoluent les effets de couches (nombres magiques, formes) ?

Connexion forte avec la théorie pour le développement des modèles

Noyaux Super Lourds → Quelles sont les limites d'existence en masse ?

➡ → Mesures de la masse en vol

Mécanismes de réaction → Comment parvenir à une description microscopique des processus de fusion, fission et collisions nucléaires rapprochées ?

Physique dans des conditions extrêmes de spin et isospin

82 Lettres d'Intensions (>1000 auteurs) Expériences Day 1 @ SPIRAL2

Objectifs de SPIRAL2

« Extension des capacités de production de faisceaux stables et exotiques du GANIL »

Phase1:

Accroitre la puissance des faisceaux stables d'un facteur 10 à 100

DESIR (étude à très basse énergie)

Z>40 A>80

Investissement : Cout: 151,7 M€ & >23 M€ détecteurs Ces faisceaux peuvent être post accélérés par SPIRAL1 et conduits vers les salles du GANIL existant.

SPIRAL2 a été retenu par l'European Strategy Forum on Research Infrastructures (ESFRI)

Faisceaux stables de SPIRAL2 – P1

Faisceaux radioactifs de SPIRAL2

Spiid.

SPIRAL 2: Nouvelle Génération RIB

- Des faisceaux radioactifs de grande qualité, pureté et intensité
- Gamme d'énergie parfaitement adaptée à des mesures de précision
- o Grande quantité d'observables et sur une large gamme de noyaux

Spectroscopie complète Estimation des facteurs de forme Sections efficaces des réactions nucléaires Propriétés des états fondamentaux Facteurs spectroscopiques Synthèse noyaux lourds

Domaines d'excellence de SPIRAL2

Les intensités des faisceaux primaires permettent

Avec les ions légers de hautes intensités accélérées par LINAC: des noyaux exotiques de petite masse produits avec des intensités comparables à celles des faisceaux stables actuels.

L'installation SPIRAL2 (PHASE 1 & PHASE 2)

Accélérateur linéaire SC Phase 1

Particles	H+	³ He ²⁺	D+	lons	
Q/A	1	2/3	1/2	1/3	1/6
I (mA) max.	5	5	5	1	1
W _O max. (Mev/A)	33	24	20	15	9
CW max. beam power (KW)	165	180	200	44	48

Total length: 65 m (without HE lines)
Slow (LEBT) and Fast Chopper (MEBT) RFQ (1/1, 1/2, 1/3) & 3 re-bunchers
12 QWR beta 0.07 (12 cryomodules)
14 (+2) QWR beta 0.12 (7+1 cryomodules)
1.1 kW Helium Liquifier (4.5 K)
Room Temperature Quadrupoles
Solid State RF amplifiers (10 & 20 KW)
6.5 MV/m max $E_{acc} = V_{acc}/(\beta_{opt}\lambda)$ with $V_{acc} = \int E_z(z)e^{i\omega z/c}dz$.

Post-accélérateur de EURISOL Basé sur le design de SPIRAL2

\triangle SPIRAL2 phase 1 Génie Civil a diaman AAAAAA NFS facility LINAC S³ facility Octobre 2012

Construction SPIRAL2 phase 1

Oct 2011

Oct 2012

Fin Génie Civil : 2013

Second œuvre et lots techniques

Bâtiment de production Phase 2

Démarrage construction en 2015

Casemate Module de Production

Module de Production

This equipment is very ambitious :

- Dimensions : 3,1x2,2x2 m and 9 T,
- Mounting and dismounting by robot every 3 month,
- High neutron and gamma integrate dose (until 10⁶ grey in 3 month),
- Positioning in all directions at +/-0,5 mm,
- Many servitudes (water, HV, HF, 1000A, command control, diagnostics information,...).

Instrumentation autour de SPIRAL2 PHASE1 Aire Expérimentale Linac (NFS et S³)

Neutrons For Science : Objectifs

Mesure de données nucléaires :

- Les réacteurs de fission de nouvelle génération
- La technologie de la fusion
- Transmutation des déchets nucléaires
- La médecine (production de radioéléments), Biologie (irradiation de cellule)

Le développement et la caractérisation de nouveaux détecteurs

• dosimètres, débitmètres, détecteurs pour la sureté et sécurité

Irradiation de puces et de composants électroniques (SEU Programmes de physique)

Analyse d'échantillons par irradiations neutrons (C dans le sol, concentration d'oxygène,...)

Mesures de section efficace par activation ou irradiations

(matériau, biologie, électronique...)

- Lol_16 : Proton and deuteron induced activation reactions, P. Bem
- Lol_24 : Neutron-induced activations reactions, A. Klix
 - → Detection setup under construction
- LoI_23 : Response of Mammalian cells to neutron exposure, C. Hellweg
 - → Detection setup already available

Mesures par temps de vol

- Lol_14 : Comparison between activation and prompt spectroscopy as means of (n,xn) cross section measurements, *M. Kerveno (IPHC)*
- Lol_21 : Light-ion production studies with Medley, *S. Pomp* (Uppsala university)
- Lol_22 : Fission fragment angular distribution and fission cross section measurements relative to elastic *np* scattering with Medley, *S. Pomp*
- Lol_13 : Study of the pre-equilibrium process in the (n,xn) reaction, X. Ledoux
 - → Detection setup already running (Geel, Uppsala, Bruyères le Châtel)

Neutrons For Science : Descriptif

Techniques Expérimentales

Detector characterization

Production of radio éléments (Mo 99)

- 80% des radiotraceurs en imagerie médicale nucléaire contiennent du technétium-99m (30 million investigations/an)

- Production dans les réacteurs (NRU,HFR,SAFAR-1,BR2 et OSIRIS) Motivation
- Recherche de nouvelle alternative de production Mo-99 (AEN-OCDE)

Proposition

 Utiliser les neutrons rapide de NFS (Démonstration-faisabilité) et SPIRAL2 (production?) 100Mo + n → 99Mo + 2n

40MeV; 5mA deuterons; 250g cible → ~200Ci en 2 jours; ~50% de la production OSIRIS

A la recherche de nouveaux atomes !

Quelle est la limite de stabilité des noyaux ? Quelles sont leurs propriétés chimiques ?

Laboratoire commun CEA/DSM

Phénomènes rares en → physique nucléaire → physique atomique

EQUIPEX S³

Porteur: GANIL (H. Savajols) Dotation: 8 000 000 €

Comment les ions en mouvement interagissent-ils entre eux ? Quel est le comportement de la matière en conditions extrêmes?

nucle

RIKEN ≈ 2.2 evt/h

Proton Dripline & N=Z nuclei LoI_Day1_6, LoI_Day1_8, LoI_Day1_9

Tests of Shell Model

- Single-Particle structure
- Development of Collectivity
- Shape coexistence \geq

LoI Day1 3, LoI Day1 4, LoI Day1 18

- Ground-State Properties LoI Dav1 10
 - Standard Model

Nuclear Astrophysics LoI Day1 26

 \succ X(p,p), X(p,y), X(p,\alpha)

-rich nuclei outside

Light RIB

fission peaks

Fusion-evaporation

Uranium

> Single-Particle structure

Neutron-Rich Nuclei

LoI Day1 7

Elements

LoI_Day1_5

> Quenching of Shell Gaps

⁴⁸Ca+²³⁸U→⁻²⁸³112+3.4n

(I=10pµA) →20evt/week/pb

Heavy and Superheavy

> Spectroscopy and Structure

> Ground-State Properties

LoI Day1 2, LoI Day1 25

> Synthesis

16 Lols submitted + 7 Lols (Phase 2 DESIR) Lols signed by 170 physicists

proton

FISIC*: a collider project on SPIRAL2 for Atomic Physics * Fast Ion Slow Ion Collisions

Atomic Physics of ion-ion collisions:

one of the widespread phenomena in the universe and the least studied in laboratory!! limited knowledge when ion stopping power is maximum

From the study of elementary processes

S³ Baseline

NIM B 266, 4162 (2008), IJMPE-Nuclear Physics, Vol. 18, (2009) Nuclear Physics A 834 (2010) 747

Haute sélectivité et transmission – Sensibilité 1 évènement/mois pour 10 fb Technologies : Aimants supraconducteurs - Interaction faisceau-faisceau

S³:Techniques Expérimentales

Instrumentation autour de SPIRAL2 PHASE2 Installation DESIR

Installation DESIR auprès de SPIRAL2

Faisceaux radioactifs basses énérgies : 10 to 60 kV

- SPIRAL1 (light n-deficient nuclei from beam/target fragmentation)
- SPIRAL2 (n-rich fission fragments, transfer and fusion-evaporation products)
- S³ (fusion-evaporation products, refractory elements)

Experiences à basse energie, permettant d'elargir les connaissances sur les principales proprietes de l'état fondamental de certains noyaux radioactifs, comme le mode de désintégration, la demivie, la masse, la charge, son rayon de charge et sa forme.

Plateforme d'Expériences DESIR

Disponibilité d'un grand nombre de dispositifs expérimentaux permettant de manipuler et de caractériser en détail les propriétés du noyau atomique : masse,
 forme, propriétés de décroissances, structure du noyau...

Instrumentation autour de SPIRAL 2

Science et Applications @ SPIRAL2

Conclusions

- SPIRAL2 Phase 1 (LINAC, S3, NFS) en construction; génie civil terminé en 2013
- ➢ NFS & première phase de S³ (8 M€ from EQUIPEX) financés et en construction
 - Premier faisceau NFS fin 2014
 - Premier faisceau S³ fin 2015
- SPIRAL 2 Phase 2 (RIB, DESIR) Fin études détaillées en 2013, Décision de construction fin 2013, Génie civil démarre en 2015
- ➢ DESIR: bâtiment et une partie des lignes de faisceau financés (9 M€ EQUIPEX)
- Nouvelle génération détecteurs pour GANIL/SPIRAL2 en construction (ACTAR-TPC, FAZIA, NEDA, EXOGAM2, PARIS)

GANIL/SPIRAL2 by 2015

