Mise à niveau de CMS pour la montée en luminosité au LHC & implications de l'IN2P3

Conseil Scientifique de l'IN2P3 21/06/2012 D. Contardo pour l'IPHC, l'IPNL et le LLR

\circ Le contexte

- Le détecteur CMS aujourd'hui
- Le plan de montée en luminosité au LHC
- Le programme d'amélioration de CMS
 - Les implications proposées par l'IPHC, L'IPNL et le LLR
 - Les besoins humains et financiers

Le détecteur CMS aujourd'hui

- Spécification : $L_{pic} \sim 10^{*34} \text{ Hz/cm}^2 \text{ à } 25 \text{ ns} 22 \text{ interactions par croisement (<PU>)}$
- Opération : 98% des canaux en opération 92% d'efficacité de prise de données

Objectif des améliorations pour la montée en luminosité

 ○ Preserver le potentiel de découverte et la précision des mesures ⇔ maintenir la performance de déclenchement, de reconstruction des objets du Modèle Standard et de mesure de l'énergie manquante

→ Granularité accrue - nouvelles technologies: radiations - traitement des données

Les premiers résultats de physique de CMS

Les motivations de la montée en luminosité au LHC

Le plan de montée en luminosité du complexe d'accélération du LHC

20	fb ⁻¹	Phase 1 : 13/14TeV -	500fb ⁻¹	Phase 2 : 13/14TeV - 3000fb	
	12	LS1 13-14	LS2 18 (19?)	LS3 22-23	33
7 10 ³	³ Hz/cm ²	7 → 13/14 TeV	Injection upgrade	LHC Interaction region upgrade	
à 50 i	าร	Injection upgrade	Linac4 (H ⁻)	Triplets (lower β*)	
		PS batch compression	PSB-PS 1.4→2GeV	Crab cavities (beam crossing leve	ling)
		SPS scrubbing	RF upgrades PS - SPS	b-b compensation (lower beam lo	oss)

Le plan de montée en luminosité du complexe d'accélération du LHC

Le plan de montée en luminosité du complexe d'accélération du LHC

Phase 1 : 13/14TeV - 500fb ⁻¹	Phase 2 : 13/14TeV - 3000fb ⁻¹	
Conception permettant l'opération à <pu> = 100 Référence pour la performance à <pu> = 50 Luminosité > 10³⁴ Hz/cm² avant LS2</pu></pu>	Conception permettant l'opération à <pu> = 200 Référence pour la performance à <pu> = 100</pu></pu>	
	22	

Phase 1 : 15-21 TeV - 500fb ⁻¹	Phase 2 : 22-33 TeV - 3000fb ⁻¹	
Conception permettant l'opération à <pu> = 100 Référence pour la performance à <pu> = 50 Luminosité > 10³⁴ Hz/cm² avant LS2</pu></pu>	Conception permettant l'opération à <pu> = 200 Référence pour la performance à <pu> = 100</pu></pu>	
	22	

LS1 (13-14)

- Complément de chambres à muons à l'avant + amélioration partielle de l'électronique de lecture
- Remplacement des photodetecteurs du calorimètre hadroniques avant (HF) avec des PMT multianodes - du calorimètre externe HO avec des SiPM - nouvelle électronique d'acquisition (BE) HF

Projets approuvés en cours de construction

• Préparation des mises à niveau de la phase 1: tube de faisceau pour le nouveau pixel - liens optiques pour le système de déclenchement du calorimètre électromagnétique (ECAL)

Phase 1 : 15-21 TeV - 500fb ⁻¹	Phase 2 : 22-33 TeV - 3000fb ⁻¹		
Conception permettant l'opération à PU = 100 Référence pour la performance à PU = 50 Luminosité > 10 ³⁴ Hz/cm ² avant LS2	Conception permettant l'opération à <pu> = 200 Référence pour la performance à <pu> = 100</pu></pu>		
	22		

LS1 (13-14)

- Complément de chambres à muons à l'avant + amélioration partielle de l'électronique de lecture
- Remplacement des photodetecteurs du calorimètre hadroniques avant (HF) avec des PMT multianodes - du calorimètre externe HO avec des SiPM - nouvelle électronique d'acquisition (BE) HF

Projets approuvés en cours de construction

• Préparation des mises à niveau de la phase 1: tube de faisceau pour le nouveau pixel - liens optiques pour le système de déclenchement du calorimètre électromagnétique (ECAL)

Phase 1 (15 – 21)

- Nouveau détecteur à pixels prêt pour installation Technical Stop étendu fin 16 (eTS 3 + 2 mois)
- Nouveaux photodétecteurs et électronique de lecture (FE et BE) des calorimètres hadroniques
- Nouveau systeme de déclenchement (L1-Trigger): muons/calorimètres/global prêt fin 2015

Pixel et HCAL Technical Design Report \rightarrow LHCC Sept 12 - L1-Trigger TDR \rightarrow LHCC Jan. 13

Phase 1 : 15-21 TeV - 500fb ⁻¹	Phase 2 : 22-33 TeV - 3000fb ⁻¹	
Conception permettant l'opération à PU = 100 Référence pour la performance à PU = 50 Luminosité > 10 ³⁴ Hz/cm ² avant LS2	Conception permettant l'opération à <pu> = 200 Référence pour la performance à <pu> = 100</pu></pu>	
	22	

LS1 (13-14)

- Complément de chambres à muons à l'avant + amélioration partielle de l'électronique de lecture
- Remplacement des photodetecteurs du calorimètre hadroniques avant (HF) avec des PMT multianodes - du calorimètre externe HO avec des SiPM - nouvelle électronique d'acquisition (BE) HF

Projets approuvés en cours de construction

• Préparation des mises à niveau de la phase 1: tube de faisceau pour le nouveau pixel - liens optiques pour le système de déclenchement du calorimètre électromagnétique (ECAL)

Phase 1 (15 – 21)

- Nouveau détecteur à pixels prêt pour installation Technical Stop étendu fin 16 (eTS 3 + 2 mois)
- Nouveaux photodétecteurs et électronique de lecture (FE et BE) des calorimètres hadroniques
- Nouveau systeme de déclenchement (L1-Trigger): muons/calorimètres/global prêt fin 2015

Pixel et HCAL Technical Design Report \rightarrow LHCC Sept 12 - L1-Trigger TDR \rightarrow LHCC Jan. 13 Phase 2 (22 - 33)

- Nouveau trajectographe, implantation dans le déclenchement de premier niveau (L1-Trigger)
- Nouveau système de déclenchement: L1-Trigger High Level Trigger
- Nouveau détecteur dans la région avant η>2.5: calorimétrie muons tracking
 Projets de conception et de R&D → Technical Proposal fin 14

Etudes de physiques liées aux mises à niveau de CMS

- La coordination de la physique est responsable de la motivation des mises à niveau dans la nouvelle organisation (un député responsable)
- Priorités pour les TDR
 - Production centrale de Monte-Carlo
 - 27 échantillons ~ 10 M Minimum bias + ~ 8M Higgs + ~ 9M SUSY
 - Higgs: gg VBH W/Z/TT H \rightarrow H(125) \rightarrow $\gamma\gamma$ ZZ (4I) $\tau\tau$ bb
 - SUSY: SUSYLM6/9 ggbox_di- γ QCD_Pt g_ γ Pt, Tauola_ttbar DYtoee/ $\mu\mu$ / $\tau\tau$
 - Higgs strahlung ZH H→ bb étiquetage b → Pixel
 - SUSY 2b/4b + MET étiquetage résolution MET → Pixel HCAL
 - SUSY γγ + MET matière ID photon résolution MET → Pixel HCAL
 - Higgs VBF H -> ττ étiquetage jet (di-jet résolution en masse), ID lepton
 - H \rightarrow $\tau\tau$ résolution MET, tau id \rightarrow L1-Trigger
 - Soft/Compressed SUSY stop bas Pt muons multiples Jets
- Au delà des TDR
 - Poursuite des études de performance en phase 1 suivant le niveau d'empilement (jusqu'à 100, condition de phase 2) et en incluant le vieillissement des détecteurs.
 - Discussion pour définir les besoins pour les détecteurs au HL-LHC
 - Alushta workshop « Perspective on physics and on CMS at very high luminosity, HL-LHC »
 - Deux nouveaux groupes de travail: déclenchement (L1/HLT) et concept de détection à l'avant (η≥2.5) en phase 2

Les implications proposées par l'IPHC, L'IPNL et le LLR

Phase 1 : 15-21 TeV - 500fb ⁻¹	Phase 2 : 22-33 TeV - 3000fb ⁻¹
Conception permettant l'opération à PU = 100 Référence pour la performance à PU = 50 Luminosité > 10 ³⁴ Hz/cm ² avant LS2	Conception permettant l'opération à <pu> = 200 Référence pour la performance à <pu> = 100</pu></pu>
	11

Phase 1

22

- Opération du trajectographe à -20°
 - Système d'air sec (IPNL) → LS1 (13-14)
- o Nouveau détecteur à Pixels
 - Système de refroidissement (IPNL) \rightarrow LS1 (13-14)
 - Système d'acquisition (IPHC IPNL) \rightarrow eTS (16)
- \circ L1-Trigger
 - Lien optiques pour le système de déclenchement ECAL (LLR) \rightarrow LS1 (13-14)
 - Développement des algorithmes de déclenchement des calorimètres (LLR) ightarrow TS (15)

Les implications proposées par l'IPHC, L'IPNL et le LLR

Phase 1 : 15-21 TeV - 500fb ⁻¹	Phase 2 : 22-33 TeV - 3000fb ⁻¹
Conception permettant l'opération à <pu> = 100 Référence pour la performance à <pu> = 50 Luminosité > 10³⁴ Hz/cm² avant LS2</pu></pu>	Conception permettant l'opération à <pu> = 200 Référence pour la performance à <pu> = 100</pu></pu>
	22

Phase 1

22

- Opération du trajectographe à -20°
 - Système d'air sec (IPNL) → LS1 (13-14)
- o Nouveau détecteur à Pixels
 - Système de refroidissement (IPNL) \rightarrow LS1 (13-14)
 - Système d'acquisition (IPHC IPNL) \rightarrow eTS (16)
- o L1-Trigger
 - Lien optiques pour le système de déclenchement ECAL (LLR) \rightarrow LS1 (13-14)
 - Développement des algorithmes de déclenchement des calorimètres (LLR) ightarrow TS (15)

Phase 2

- Nouveau trajectographe
 - Etude de conception et simulation (IPNL)
 - Electronique ASIC frontale (IPNL)
 - Système d'acquisition (IPHC-IPNL)
 - Reconstruction de traces L1-Trigger implantation Trigger Global (IPHC, IPNL, LLR)
 - Système de refroidissement Structure mécanique des End-Cap (IPNL)
- Trigger de Haut Niveau (HLT)
 - Calcul parallèlisé GPU (LLR, IPNL)

Implications dans le détecteur à pixels (phase 1)

Maintien des performances de reconstruction amélioration de la résolution et réduction des conversions de photons

Nouvelles caractéristiques

- \circ 4 couches et 3 disques, R_{min} = 30mm
- Circuit FrontEnd digital sans pertes
- Masse réduite :

→ refroidissement CO2

- o Câblage
- Convetisseurs DC-DC
- Structures mécaniques
- Nouvelle carte d'acquisition \rightarrow DAQ
- Système pilote installé pendant LS1 → DAQ
- Remplacement de la couche interne à 250fb⁻¹

Système de refroidissement du détecteur à pixels

A. Eynard, N. Lumb, J.C. Ianigro (D. Contardo) (IPNL)

- Système bi-phase CO2 inspiré de LHCb (-20° à +15°)
- Prototypes de 2KW développé à Lyon
 - Spécifications du système et choix des composants
 - Test de performances avec des structures pixels
- 3 dispositifs prévus (15 kW chacun):
 - Mise en oeuvre/maintenance BPIX FPIX
- Contributions IPNL en collaboration avec le CERN
 - Conception mécanique à l'IPNL (approuvée)
 - Construction des chassis, isolation...
 - Assemblage et mise en oeuvre
- \circ 1^{er} système 04/13 BPIX et FPIX + 1 an

Système d'acquisition du détecteur à pixels

- *R. Baumann, C. Bonnin , E. Chambit, E. Chabert, L. Charles, J. Hosselet, L. Gross* (IPHC) *L. Mirabito* (IPNL)
- Nouvelle carte DAQ (éliminer la limitation de bande passante du FED actuel)
 - μTCA + VIRTEX6/7 basée sur la mini-T5 développée pour le trigger calorimètre (IC)
 - Développement d'une plateforme d'acquisition générique (phase 1 et phase 2)
 - Responsabilité de l'IPHC en collaboration avec l'IPNL

Ο

Développement commun pour carte GLIB phase 2 (voir page 28-30)

CS IN2P3 21/06/2012 19

Système de déclenchement des calorimètres (phase 1)

Système de déclenchement des calorimétres (phase 1)

R. Cornat, Y. Geerebaert, T. Romanteau, A. Zabi, (P. Busson, Y. Sirois) (LLR)

- Le nouveau RCT utilisera des liens optiques pour transférer les données des calorimètres
- Installation prévue dans l'arrêt LS1 (13 -14) pour permettre de développer le nouveau dispositif de déclenchement en parallèle avec l'opération du système courant (fin 2015)
- o Le LLR contribue à la conception et la validation de la carte oSLB qui sera utilisée
- LE LLR souhaite par ailleurs contribuer au développement des nouveaux algorithmes de sélection et en pariculier à leur implantation dans les FPGA du système
 - Trois développements critiques pour la physique sont proposés :

- Correction d'effet d'empilement basée sur la densité d'énergie evt/evt utilisée au niveau des primitives de trigger ou des objets globaux
- Déclenchement sur les τ utilisant les nouvelles informations calorimétriques (plus la mise à niveau HCAL)
- Déclenchement VBF utilisant les possibilité accrues de corrélations

Nouveau trajectographe (phase 2)

Remplacement complet

- détecteur plus granulaire et plus résistant aux radiations
- o implantation dans le L1-Trigger (de la partie Silicium à piste)
 - Identification et isolation : muons, électrons, taus, veto pour les photons
 - Meilleure assignation du Pt pour des coupures basses
 - Associations au point d'impact (vertex) pour réduction du taux d'accidentels (empilement)
- Etude de configuration et performance
 - Simulations (paramétrisées), CMSSW (GEANT)
- Programme de R&D en cours
 - Senseurs
 - Electronique de lecture frontale et d'acquisition
 - Modules et structures mécaniques
 - Refroidissement CO2, alimentation DC/DC (idem pixel phase 1)

Nouveau trajectographe (phase 2) : simulations

- G. Baulieu, G. Boudoul, D. Contardo, N. Giraud, S. Viret (IPNL)
- Implantation dans le cadre logiciel CMSSW de la configuration Barrel-EndCap
- o Simulation des flux de données et réduction des informations pour le déclenchement
- Emulation de la reconstruction des traces L1-Trigger par Mémoires Associatives (AM)

Nouveau trajectographe (phase 2) : électronique frontale

G. Boudoul, D. Contardo, H. Chanal, H. Mathez, L. Mirabito, W. Tromeur, Y. Zoccarato (IPNL)

• • Proposition d'une architecture avec suppression de zéro et lecture asynchrone

DAQ (pages 28 à 30)

Nouveau trajectographe (phase 2) : électronique frontale

- G. Boudoul, D. Contardo, H. Mathez, L. Mirabito, W. Tromeur, Y. Zoccarato (IPNL) H. Chanal (LPCC pôle michrau)
- Proposition d'une architecture avec suppression de zéro et lecture asynchrone

 Validation de l'architecture en cours, étude des bandes passantes, pertes et latence, avec les événements simulés réalistes (page 22)

<pu>= 200 50 ns</pu>	<clusters>/1/2 module/BX</clusters>	<stubs>/1/2 module/BX</stubs>	BW Mbs Trigger	BW Mbs Data
Layer4	3.4	0.37	237	6
Layer5	1.9	0.2	131	4
Layer6	1.1	0.1	77	2
Layer1	15	0.8	558	32

Nouveau trajectographe (phase 2) : électronique frontale

- G. Boudoul, D. Contardo, H. Chanal, H. Mathez, L. Mirabito, W. Tromeur, Y. Zoccarato (IPNL)
- Deux circuits d'évaluation soumis en technologie IBM 130nm
 - Un pré-amplificateur commuté à 20MHz → pas d'empilement hors croisement pas de temps mort de saturation pour des HIP (particules hautement ionisantes)
 - Un bloc logique : recherche de clusters corrélation spatiale Pt-module sérialisation des données de déclenchement (40MHz) et de lecture complète sur L1 (100kHZ)

Pré-amplificateur commuté à 20MHz Puissance consommée et S/N satisfaisant étape suivante: validation à 40MHz

Bloc logique complètement fonctionnel étapes suivantes : améliorer la puissance consommée

- Evolution :
 - coupler étage amplificateur/comparateur et logique dans un circuit de 256 voies, adapter au reste de la chaine de lecture aller vers une technologie 65nm
 - Premier développement d'une émulation des fonctions du concentrateur dans le FPGA de la carte GLIB → test de prototypes de Pt-modules

Nouveau trajectographe (phase 2) : DAQ

R. Baumann, C. Bonnin , E. Chambit, E. Chabert, L. Charles, J. Hosselet, L. Gross (IPHC) *L. Mirabito (IPNL)*

- L'IPHC contribue aux spécifications et à la qualification de la carte d'acquisition GLIB développée par le (CERN)
 - Carte MicroTCA avec FPGA VIRTEVX6, une mémoire de 2Mmots de 32 à 160MHz, 4 transpondeurs optique (SFP+), un lien Ethernet Gbit, 4 OL 4.8Gb/S possibles
- Comme laboratoire pilote pour l'évaluation des performances l'IPHC a développé un système de test générique basé sur une mezzanine FMC-108
- Il développera le système de contrôle et d'acquisition de la carte pour l'application trajectographe avec l'aide de l'IPNL
- Une première utilisation en faisceau avec un téléscope Silicium est prévue en Octobre 2012

Développement DAQ pour la phase 2

Phase 2			
A I 2015 et +	 Itération des développements « bancs test » pour CBC3 Ordres de grandeur augmentés pour le système de DAQ (scaling factor) 		
lanvier 2014	 Exploitation des racks microTCA (IPHC) System test / Beam test CBC2 avec Hybrides 8xCBC (all) Beam test modules Si & Hybrides 2xCBC (hors CERN) (all) 		
	 Assemblage et test des modules Si basés sur hybrides 2xCBC (?) Apparition et test des Hybrides 8xCBC (CERN) Qualification Hybrides 8xCBC (CERN – IC) Conception FMC dédiée Hybrides 8xCBC (Bristol) Conception banc test mobile dédié Hyb. 8xCBC (IPHC) Concentrateur V2 (IPNL) 		
Juillet 2013	Tests système intégré Hybrides 2xCBC (all)		
 	 Tests chips CBC-2 sur Hybride 2xCBC (all) Qualification des CBC-2 (IC) Qualification Hybrides 2xCBC (CERN) Conception FMC dédiée Hybrides 2xCBC (Bristol) Conception banc test mobile dédié Hyb. 2xCBC (IPHC) Concentrateur V1 (IPNL) 		
Mars 2013	Chips CBC-2 disponibles (IC) Hybride 2xCBC (CERN)		
Décembre 2012 : Arrêt faisceau CERN	 Préparation banc test pour qualification (hors faisceau) CBC-2 VHDL (data packing) (IPHC – IPNL - IC) Hardware (connectique? PC readout?) (IC - Bristol) Software (Slow control & debug interface) (IPHC – Bristol) 		
Faisceau Test CBC-: Octobre 2012	Beam test CERN pour readout CBC-1 (all)		
↑ i	 Fourniture à l'IPHC d'un CBC1 carrier + FMC (Bristol) Prise en main des interfaces vers les chips CBC (IPHC) 		
 Connexion GLIB / CMS framework (XDAQ) opérationnelle (IPHC – IPNL) Expérience de conception d'une ligne de readout complète (DAQ / TTC / Trigger) (all) Intégration de code VHDL provenant de différentes sources (IPHC, avec contributions de tous) Connaissance du data packing pour la DAQ CMS (IPHC, IPHC, avec contributions de tous) Exploitation des signaux TTC/Trigger et génération des signaux sTTS (IPHC – CERN) Création des blocs VHDL nécessaires à la conception d'un FED (IPHC) Développement du concentrateur version Bêta (IPNL) 			
Juin 2012			

Aspects communs des développements DAQ pour les phases 1 (pixels) et 2 (trajectographe)

Un plan similaire doit être Ο développé pour la carte mini-T5 adaptée au pixel

Faisceau Test CBC-1

Octobre 2012

- Connexion GLIB / CMS framework (XDAQ) opérationnelle
- Expérience de conception d'une ligne de readout complète (DAQ / TTC / Trigger)

- Intégration de code VHDL provenant de différentes ٠ sources
- i Connaissance du data packing pour la DAQ CMS
- Exploitation des signaux TTC/Trigger et génération des signaux sTTS
- Création des blocs VHDL nécessaires à la conception d'un FED

Phase 2	<u>Phase 1</u>
I Itáration des développements « bancs test ».	
i pour CBC3	
• Ordres de grandeur augmentés pour le	100 %
système de DAQ (scaling factor)	!
2015 et +	1
Exploitation des racks microTCA	→ 100 %
System test / Beam test CBC2 avec Hvb. 8xCBC	→ 50 %
Janvier 2014 Beam test modules Si & Hyb.2xCBC (hors CERN)	
• Assemblage et test des modules Si basés sur	→ 0%
Hyb.2xCBC	
Apparition et test des Hybrides 8xCBC	→ 20 %
• Qualification Hybrides 8xCBC	→ 20 %
• Conception FMC dédiée Hybrides 8xCBC	→ 50 %
Conception banc test mobile dédié Hyb. 8xCBC	→ 70 %
Concentrateur V2	→ 0%
Juillet 2013 Tests système intégré Hybrides 2xCBC	
• Tests chips CBC-2 sur Hybride 2xCBC	→ 10 %
Qualification des CBC-2	→ 20 %
Qualification Hybrides 2xCBC	→ 20 %
Conception FMC dédiée Hybrides 2xCBC	→ 50 %
• Conception banc test mobile dédié Hyb. 2xCBC	→ 70 %
Concentrateur V1	→ 0%
Mars 2013 Chips CBC-2 disponibles	1
Hybrides 2xCBC & FMC dédiée disponibles	1
Préparation banc test pour qualification CBC-2	
• VHDL (data packing)	→ 70 %
 Hardware (connectique? PC readout?) 	──→ 0 %
Software (Slow control & debug itf.)	──→ 70 %
Décembre 2012 Arrêt faisceau CERN	
Octobre 2012 Faisceau Test CERN pour readout CBC-1	
• Fourniture à l'IPHC d'un CBC1 carrier + FMC	
Prise en main des itf.vers les chips CBC	── 7 0 %
100 %	→ 70 %
Juin 2012	i
1	•

CS IN2P3 21/06/2012

28

Nouveau trajectographe (phase 2) : Structure mécanique

N. Lumb, J.C. Ianigro (D. Contardo) (IPNL)

- Conception d'une structure légère pour les bouchons d'une configuration Barrel-EndCap
- Basé sur des Pt-modules similaires à ceux du Barrel (pas de géométrie pointante, simplification de la production, réduction du nombre de types de modules)
- o Mécanique en demi-roues
- Simulation FAO des déformations
- Etude du routage des services
- Automatisation du dessin 3D en utilisant les scrips CATIA
- Evolution vers le développement de prototypes

Déclenchement de Haut Niveau HLT (phase 2)

D. Chamont, G. Grasseau, A. Sartirana, M. Nguyen, C. Veelken, F. Beaudette, P. Busson

- Le HLT actuel est constitué d'une ferme de calculateurs (1250 nœuds de calcul ~13400 cœurs de processeur) capable de réduire le taux d'événement L1 de 100kHz à 1KHz dont 350 MHz sont transférés au centre T0 et la grille de calcul mondiale WLCG pour un traitement immédiat. Le temps de calcul moyen à disposition par événement est ~ 160 ms.
- L'émergence des architectures pluri-coeurs, sous forme d'accélérateurs (coprocesseurs) spécialisés (graphiques- GPU) ou plus généralistes est une possibilité prometteuse pour améliorer les performances de calcul.
- Le groupe informatique du LLR a lancé récemment une initiative (projet GridCL) au sein du Labex P2IO. GridCL a décidé de porter son effort, à titre de benchmark, sur le passage du code de reconstruction des traces de CMS sur des GPUs.
- Le LLR propose de profiter de cette synergie évidente pour s'impliquer dans les réflexions de CMS autour de ces questions de calcul parallèle par les techniques « many/multi-core» incluant aussi les GPUs.

Autres opportunités de développements (phase 2)

• Reconstruction des traces pour le L1-Trigger et le Global Trigger

- Prolongement du travail de simulation (IPNL) sur l'émulation d'AM par le développement des cartes électroniques associées.
- Réflexion en cours sur le dimensionnement du système et le développement d'une émulation test dans un FPGA (ex. carte GLIB) (IPNL)
- Prolongement de la proposition d'étude d'algorithmes pour le L1-Trigger (LLR) au couplage des primitives de traces à celle des autres détecteurs

• Chambre RPC à verres résistifs

- La zone entre 1.6<η<2.4 n'est pas équipée de RPC (flux trop élevé)
- Les projets « muons » de CMS développent une stratégie pour le long terme incluant la couverture de cette région
- Un programme de R&D GEM a été approuvé par CMS dans cette perspective
- Une proposition alternative de R&D GRPC devrait être soumise à la collaboration CMS, portée par le groupe ILC de l'IPNL (voire page 38).

• Détecteurs à technologie diamant

- Option pour la couche interne du détecteur à pixels
- Demande ANR classée pour un R&D diamants mono-crisatallins
- Contribution IPHC au R&D générique RD42 (voir p39)

• Estimations sur 5 ans

- Hypothèse de fin de la construction de phase 1 en 2017
- Hypothèse de fin des R1D phase 2 en 2017
- Contribution de l'IN2P3 pour le financement des projets de la phase 1 (CORE)
 - Estimée suivant la règle du nombre de signataires: 2460kCHF
 - Affichée dans la matrice financière de CMS: 1750kCHF + 250kCHF en fonds communs
- Estimation du budget d'accompagnement de la construction pour la phase 1
 - Bancs de développement et de qualification ~ 220kEuros (détail page 33)
- Estimation des R&D
 - ~ 650kEuros (détail page 33)
- Estimation du budget de missions
 - Réunions de travail ~ 70kEuros
 - Faisceaux tests et mise en oeuvre ~ 150kEuros

Besoins financiers (estimations)

Proposition				
Budget (kEuro)	CORE ¹ (P1)	Accomp. (P1)	R&D (P2)	Missions
Refroidissement (P1)	500			
Trigger (P1)	500	100		
DAQ (P1 et P2)	300	120	120	
Common Items	370			
ASIC FE (P2)	Ŭ		300	
Reconstruction Traces (P2)			100	
Mécanique EndCap (P2)			30	
HLT P2			100	
Mise en œuvre et Faisceaux tests				150
Réunions de travail				70

P1/P2 projets des phases 1 et 2 CORE= budget de construction 1 Euro= 1.2 CHF

Besoins en personnels (estimations)

Estimations prenant en compte les besoins et les personnels actuellement impliqués (susceptibles d'évolution dans le temps)

ETP(# de personnes)	ITA	Physiciens
Refroidissement (P1)	1 (3)	0.1 (1)
Trigger (P1)	2 (3 + 1CDD*)	1 (2)
DAQ (P1 et P2)	4 (6 + 1 CDD*)	1 (2)
ASIC FE (P2)	3 (4 + 1 CDD*)	0.5 (2)
Reconstruction Traces (P2)	2** (1 + 1 CDD)	1 (2)
Mécanique EndCap (P2)	0.3 (2)	0.1 (1)
HLT (P2)	2 (3)	1 (2)
Simulations		3 (6)***

* Non existant

- ** Non existants
- *** La simulation de performance des détecteurs et de physique, bénéficierait de CDD physiciens compte tenu des charges d'opération et d'analyses des groupes (avec aussi contribution aux R&D)

Conclusion

- L'expérience CMS fonctionne actuellement à un niveau de performance exceptionnel avec un très fort potentiel de découverte en 2012. des données sont aussi « parquées » pour un traitement et analyse pendant l'arrêt LS1
- La collaboration s'investit significativement dans la préparation des améliorations des dispositifs expérimentaux, pour le programme de physique des deux prochaines décennies
- Les effet d'empilement sont déjà présents et la montée en luminosité du LHC au delà des spécifications nominales pourrait intervenir assez rapidement après l'arrêt de 2013-2014
- Une première phase de mises à niveau de CMS est proposée à l'horizon 2016. Les laboratoires de l'IN2P3 participent au projet de remplacement du détecteur à pixels et au développement du nouveau système de déclenchement de premier niveau. Les TDR sont prévus cet été et début 2013.
- Ces deux projets vont être soumis pour approbation au comité LHCC cet été, ils ont besoin d'un début de financement de construction dès 2013 (en particulier pour les aspects liés aux activités de l'IN2P3)

Conclusion

- La seconde phase de montée en luminosité du LHC pourrait intervenir en 2022
- Des modifications importantes des détecteurs seront nécessaires
- Les laboratoires de l'IN2P3 souhaitent s'investir plus fortement dans les programmes de R&D associés. Les contributions proposées concernent essentiellement l'implantation du trajectographe dans le déclenchement de premier niveau ainsi que le développement de son système d'acquisition et le traitement des données dans le niveau informatique pour la sélection finale des événements enregistrés.
- Les projets de mises à niveau ont besoin de support pour assurer une contribution significative de l'institut dans CMS

Diapositives complémentaires

Détecteurs GRPC pour CMS (I. Laktineh)

Les RPC-Bakelite sont limitées à un taux de particules ~1 kHz/cm²

Les GRPC à verre semi-résistif ont été étudiées par la collaboration franco-chinoise (FCPPL)

- Fonctionnent à haut flux (>20kHz/cm2)
- Résistent aux irradiations (test réalisé au GIF)
- Fournissent une mesure du temps pécise ~ 100ps avec 2 x 6 gap
- Même gaz et donc les mêmes stations que celles des
- Faible coût

Test réalisé avec un faisceau pulsé d'électrons (6-gap GRPC)

Détecteurs diamant pour CMS (J.M. Brom)

Motivation : Aucune solution pour R < 7cm Exigence de l'utilisation du tracker au premier niveau trigger

Réponse possible : détecteurs sur diamants CVD monocristaux

- résistance aux radiations (évaluée à 10¹⁶ neq/1MeV)
- Formation du signal en t ~1psec

Programme : - Réalisation et tests de structures sur monocristaux (4x4 mm²) - Réalisation de diamants de dimensions ~ pixels (1 x 1 cm²)

Partenaires : - LSPM (institut INSIS) pour les réalisations

- INeSS (INSIS) pour les implantations et caractérisations
- LPSC Grenoble (ATLAS) pour les tests
- Colorado U. pour les tests

Statut : ANR demandée 640 k€ sur 4 ans – en liste complémentaire
 Réalisation de structures de tests en évaluation routinière (labo et tests au FNAL)
 Réalisation de mosaiques de monocristaux de grandes dimensions (pas encore fonctionnelles)

Structure de tests 4x4 mm²

Après pixellisation

FNAL results

Budget IN2P3 : 8000 € /an Travail quasiment en bénévolat…

Mosaique de monocristaux 1,2 x 1,2 mm²

Performance du détecteur à pixels

 $\eta \sim 1.5$: γ -conversion for H $\rightarrow \gamma\gamma$ from 22% to 11% for new 4 Layer Pixel System

Performance du détecteur à pixels

Performance du détecteur à pixels

Performance du système de déclenchement

Mise à niveau du système à muons (LS1)

New features

- CSC and RPC: ME4/2 (1.25 $< \eta < 1.8$)
 - \rightarrow More hits improved precision
- CSC: M1/1 (2.1 < η < 2.4) new digital boards and trigger cards

\rightarrow Higher granularity - improved precision

• DT new trigger readout board and relocation of sector collector from UXC55 to USC55

Préliminaire études en cours

$f_{0}^{10^{6}}$ f_{0}

Mise à niveau du HCAL (phase 1)

Features of new design: Photo-transducers

- SiPMs replacing HPDs in HB/HE/HO (compact, low voltage, S/N x 10, higher QE)
 - Increased granularity → depth segmentation in HE/HB
 - Higher gain \rightarrow pulse shape usage, reduced noise effects
 - ightarrow Avoid discharges, better isolation and particle ID, improved calibration
- For HF new multi-anode PMT (thinner glass window and metal wall) and timing with TDC
 - \rightarrow Reduce background from PMT windows

Main Effects in HB Geometry:

- High PU dependence in 1st layer (Green)
- Large "Shower Max" Deposition in 1st
 Interaction Length (Yellow)
- Low occupancy rear compartment (for muons) Interleaved to equalize signal and to provide redundancy (Purple/Blue)
- o HE Geometry
 - Tuned for radiation recovery

Matrice Budgétaire (phase 1)

Subsystem/Upgrade Item	2011	2012	2013	2014	2015	2016	2017	2018	Total
HF - Phototubes	1.80	0.19							1.99
Muon CSC	2.33	1.78	1.22	0.22					5.55
Muon DT		1.04	0.55	0.19	0.41	0.15			2.34
Muon RPC	1.09	1.78	0.75	0.52					4.14
DAQ				0.30	0.30	1.60	4.50		6.70
Pixel Tracker	0.08	1.51	3.62	5.60	5.14	0.89	0.63		17.47
HCAL		0.05	0.92	2.16	2.07	0.60	0.00		5.80
Trigger		0.20	1.10	1.30	1.10	0.90	0.00		4.60
Magnet power and cryo	0.27	1.01	0.03	0.03	0.00	0.00	0.00	0.00	1.34
Beam Instrumentation	0.04	0.43	0.31	0.22	0.15	0.05	0.05	0.30	1.55
Infrastructure	0.39	2.23	2.31	0.65	0.24	0.10	0.10	0.30	6.32
Test Beam Facilities Upgrade	0.14	0.09	0.22	0.13	0.03				0.61
Safety systems upgrade	0.12	0.25	0.34	0.13	0.05	0.01	0.01	0.06	0.97
Electronics Integration	0.00	0.18	0.53	0.53	0.18	0.04	0.04	0.10	1.60
Engineering Integration	0.15	0.37	1.19	1.15	0.15	0.07	0.23	0.36	3.67
Subtotal Common Items	1.10	4.55	4.91	2.83	0.79	0.27	0.43	1.12	16.00
Total	6.40	11.10	13.07	13.12	9.81	4.41	5.56	1.12	64.59

M CHF

Technical Design Reports en préparation \rightarrow Révision des coûts en cours

CMS Upgrade Organization

