# Dark Side and its perspectives



Davide Franco CNRS APC



Conseil Scientifique de l'IN2P3 October 25<sup>th</sup>, 2012

# **The Collaboration**



Augustana College, SD Black Hills State University, SD Drexel University, PA Fermi National Accelerator Laboratory, IL Princeton University, NJ Temple University, PA University of Arkansas, AR University of California, Los Angeles CA University of Houston, TX University of Massachusetts, Amherst, MA Virginia Tech, VA



Laboratori Nazionali del Gran Sasso, Assergi Universita' degli Studi and INFN, Genova Universita' degli Studi and INFN, Milano Universita' degli Studi and INFN, Perugia Universita' degli Studi and INFN, Napoli

Smoluchowski Institute of Physics, Krakow



Institute of High Energy Physics, Beijing

Joint Institute for Nuclear Research, Dubna Skobeltsyn Institute for Nuclear Physics, Moscow National Research Centre Kurchatov Institute, Moscow St. Petersburg Nuclear Physics Institute, Gatchina

Institute of Nuclear Research, Kiev



University College London, London

# **Guide**lines

### Double phase Argon time projection chamber

- Liquid argon is a great dark matter target
- Good scintillation (~40,000 photons/MeV)
- Transparent to its own scintillation light
- Easy to purify

### **Background identification**

- Argon pulse shape discrimination
- S1/S2 discrimination
- Neutron with borate scintillator

### **Active shields**

- Water Cherenkov against muons
- Borate scintillator against mu and n
- Multiple scattering with the TPC

#### Three stage approach program

- DS-10 kg: full prototype
- DS-50 kg: physics goal 10<sup>-45</sup> cm<sup>2</sup>
- DS-G2: physics goal 10<sup>-47</sup> cm<sup>2</sup>

### Ultra-low background materials

- Depleted liquid argon
- Low background photo-detectors

• (...)

# The <sup>39</sup>Ar Problem

Depleted in <sup>39</sup>Ar Depletion factor: < 0.65% (90%CL)





VPSA system (Cortez) **0.5 kg/day** production - 125 kg produced so far (150 kg needed) arXiv:1204.6024

Cryogenic Distillation **0.9 kg/day** production 70 - 81% efficiency ~ 19 kg produced so far arXiv:1204.6061

Relatively inexpensive technology, could be scaled to multi-ton detectors



DarkSide and DEAP will collaborate to expand the argon extraction facility in Cortez

- ✓ 5000 kg for DarkSide
- ✓ 4000 kg for DEAP
- Aim for 50 kg/day argon collection rate

Upgrade begin in 2013

# **The Detector**

#### Dark Side 50

Neutron veto 2 m radius Radon-free clean room 110 PMTs 8-inches Borate scintillator (PC+TMB) **TPC-3** tons ~ 550 3" PMTs Design under investigation Instrumented water tank Liquid scintillator 279 ea. 3"PMTs provide 48% cathode coverage of the top and bottom windows Fused Silica Plate w/ Gas Pocket Notes 1. Total LAr: 5T 2. Active LAr: 3.3T 3. Fiducial LAr: 2.8T 4. 3" PMTs: 558 ea. Inner detector TPC Outer Shell

External water tank 5.5 m radius – 10 m high 80 PMTs 8-inches

#### TPC-50kg

38x3 inches PMTs Wavelength shifter Extraction field: ~3 kV/cm Drift field: ~1 kV/cm

Teflon Reflector

Cu Field Cage Teflon Insulator

Fused Silica Plat

Inner Shell

# **Two Phase Argon TPC**



# **Discrimination Power**

Very powerful **rejection capability** for electron recoil background

The recombination probability (and hence the ratio of **S2/S1** light) also depends on ionization density **10<sup>2</sup>-10<sup>3</sup>** additional discrimination

The ratio of light from singlet (~7 ns decay time) and triplet (1.6 µs decay time) depends on ionization density >10<sup>8</sup> discrimination factor Xenon singlet and triplet decay times are comparable

>10<sup>10</sup> total electron recoil rejection



# **The Vetos**

### Neutrons from natural radioactivity

#### **Radiogenic neutrons**

- from  $(\alpha, n)$  and spontaneous fission (e.g. U and Th)
- energy ~ a few MeV (<10 MeV)</li>

### Source in DarkSide:

- PMTs (low background PMTs ~ few n/year/PMT)
- Steel in cryostat and support structures

### **Cosmogenic neutrons**

#### Flux at LNGS: 2.4 m<sup>-2</sup> day<sup>-1</sup>

- Expected rate ~ 3x10<sup>-33</sup> /s/atom
- WIMPS rate ~ 10<sup>-34</sup> /s/atom (@ 50 GeV s~10<sup>-45</sup>)

### **Passive shielding**

neutrons from surrounding rocks

- 3 m of water rej. factor ~10<sup>3</sup>
- 1.5 m of liquid scintillator: rej. factor ~20

### Boron-loaded radio-pure liquid scintillator

- <sup>10</sup>B+n -> <sup>7</sup>Li+ $\alpha$ (1.474MeV)+ $\gamma$ (0.478MeV) (93.7%)
- $\sigma$ =3837b and capture time ~ 3µs
- 1m thick veto: **rejection factor** ~10<sup>3</sup> against external neutrons



Water Tank muon veto + neutron veto reduces total cosmogenic background by >> 10<sup>3</sup>

Neutrons are identified in the borate scintillator: measurement of the residual rate

# **The Stages**

### Dark Side 10 kg

installed in Hall C of LNGS 10 kg active mass of atmospheric argon Operating at LNGS since summer 2011 Measured light yield **9 p.e./keVee**. Proved **discrimination** power and **HHV feedthrough stability** demonstrated over 8 months of data taking at full value of the fields

#### Dark Side 50 kg

funded by INFN DOE NSF in phase of installation (Hall C) **Ready in spring 2013** Test active veto performance and low background procedure Sensitivity 10<sup>-45</sup> cm<sup>2</sup> at 100 GeV



Dark Side G2 (3 tons) R&D funded NSF Sensitivity 10<sup>-47</sup> cm<sup>2</sup> at 100 GeV 2015 construction 2016 data taking

# **The Status**

- CTF tank: emptied and adapted
- Liquid scintillator sphere: installed and cleaned (class 50)
- Rn-suppressed clean rooms (~10 mBq/m3): top in phase of installation, bottom installed (Rn-scrubbed supply demonstrated < 1 mBq/m<sup>3</sup>)



### The Sensitivity



# Why Dark Side

**Xenon100** (and Xenon 1ton in the near future) is unambiguously the present leading experiment in direct dark matter search

**Bolometers** (and hence Edelweiss) are a wonderful technology, but difficult to scale to the ton mass

What are our reasons for Dark Side?

- (1) Cross check with different nuclear targets **complementary** to Xenon
- (2) Competitive sensitivity
- (3) Scalable (and relatively less expensive) technology to the ton mass
- (4) **Discrimination** (stronger then in Xenon)
- (5) Particle identification (TPC and borate scintillator)
- (6) Efficient double shielding

(7) Very robust **expertise's** on liquid scintillator (Borexino community) and liquid Argon (WARP community + GERDA engineers)

(8) Large interest in the community on liquid Argon technology

# **Moreover: LAr Technology**

General interest to **acquire expertise** in LAr technology for future activities in Neutrino Physics and Direct Dark Matter Search

Fitting time schedule: R&D → Dark Side → LAGUNA-LBNO

**Synergies** with the LAGUNA-LBNO framework at APC and with R&D at IPNL

Good opportunity to strength the LAr community in **France** 

# Photodetection In Dark Side

### Dark Side G2 investigated options

#### Low background PMTs

- + known technology
- - cost

#### QUPIDS

- + low background QE ~ 30%
- not on the market
- - problem with HV

### Our Dark Side G2 option: SiPMs





# **Silicon Photomultiplier**

#### **Geiger Mode Avalanche Photo-diode**

- ✓ solid state technology: robust, compact
- $\checkmark$  high detection efficiency:  $e = QE \times e_{geo} \times e_{avalanche}$
- $\checkmark$  high internal gain of  $10^5\div10^6$
- ✓ high sensitivity for single photons
- ✓ excellent timing even for single photo electrons
- ✓ good temperature stability
- ✓ devices operate in general < 100V</p>



#### Questions

### Mass production?

- Larger pixel size or higher density?
- Multi channel readout?
- Working in cryogenic?
- Radiopurity tested?
- Reduced gain summing channels?



### SiPM Dark Rate At Low Temperature



#### SensL1 Series 1000

848 cell array (20x20mm<sup>2</sup>), fillfactor 43% Breakdown voltage 28.2V (T<sub>room</sub>)

#### JINST 3 (2008) P10001



# LAr and SiPM in France

APC Neutrino + IPHC Neutrino groups interested in Dark Side and LAGUNA-LBNO
 APC Cosmology group interested in Dark Side
 IPNL Neutrino group (LabEx in LAr) interested in the SiPM R&D

#### **ToDoList**

(1)Read out electronics
(2)Increased PD efficiency
(3)Radiopurity
(4)Characterization in cryogenics
(5)Wavelength shifter

#### **Presently at APC**

(1)Characterization at room temperatures
(SENSL and Hamamatsu)
(2)Contacts with FBK: defining the collaboration and the R&D
(3)Installing setup for characterization in cryogenics

### **Promising technologies + several research interests:**

joining the efforts?

# The financial prospect of DS

R&D already funded by **NSF** and answer by **DOE** is coming soon (end of October) **INFN** R&D within the DS50 program

| Item                            | Dark Side G2                 | Capital Cost Capital Cost+ |               |           |
|---------------------------------|------------------------------|----------------------------|---------------|-----------|
|                                 | Dark Side G2                 |                            | + Contingency | Dominant  |
| Photosensors                    |                              | \$4,900,000                | \$6,370,000   | component |
| Electronics, Feedth             | roughs, and Cables           | \$1,820,000                | \$2,366,000   | component |
| TPC                             |                              | \$400,000                  | \$600,000     |           |
| Cryostat, Cryogenic             | s, and Argon Recovery System | \$1,000,000                | \$1,430,000   |           |
| UAr Extraction and Purification |                              | \$1,325,000                | \$1,722,500   |           |
| Possible neutron ve             | to upgrade                   | -                          | \$500,000     |           |
| Computing                       |                              | \$300,000                  | \$390,000     |           |
| Total                           |                              | \$9,745,000                | \$13,378,500  |           |
| DOE                             |                              |                            | \$1,990,000   |           |
| INFN                            | Preliminary split of fundi   | ng                         | \$2,756,000   |           |
| NSF                             | among agencies               |                            | \$8,632,500   |           |

#### N.B.: shieldings are not included because already installed for DS50

# A possible French budget profile

#### Identified Tasks photodetection + Monte Carlo (long term experience in APC and IPHC)

#### Ideal France participation in Dark Side

|           | 2013 | 2014   | 2015   | 2016   | 2017  | Total   |
|-----------|------|--------|--------|--------|-------|---------|
| Equipment |      | 300 kE | 300 kE |        |       | 600 kE  |
| CDD       |      | 100 kE | 100 kE | 100 kE | 50 kE | 350 kE  |
| Mission   | 5 kE | 30 kE  | 30 kE  | 30 kE  | 20 kE | 115 kE  |
| Total     | 5 kE | 430 kE | 430 kE | 130 kE | 70 kE | 1065 kE |

### **Preparing the future**

### let's go to a common R&D on LAr and SiPM

# **In Conclusion**

