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FIG. 2.È(a) Hubble diagram for 42 high-redshift type Ia supernovae from the Supernova Cosmology Project and 18 low-redshift type Ia supernovae from
the Supernova Survey, plotted on a linear redshift scale to display details at high redshift. The symbols and curves are as in Fig. 1.Cala! n/Tololo
(b) Magnitude residuals from the best-Ðt Ñat cosmology for the Ðt C supernova subset, 0.72). The dashed curves are for a range of Ñat()

M
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cosmological models : on top, (0.5, 0.5) third from bottom, (0.75, 0.25) second from bottom, and (1, 0) is the solid curve on bottom. The()
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middle solid curve is for Note that this plot is practically identical to the magnitude residual plot for the best-Ðt unconstrained cosmology()
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of Ðt C, with (c) Uncertainty-normalized residuals from the best-Ðt Ñat cosmology for the Ðt C supernova subset,()
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supernovae ; cf. P97) and checked for consistency after the
Ðt.

We have compared the results of Bayesian and classical,
““ frequentist,ÏÏ Ðtting procedures. For the Bayesian Ðts, we
have assumed a ““ prior ÏÏ probability distribution that has
zero probability for but otherwise has uniform)

M
\ 0

probability in the four parameters a, and For)
M

, )", M
B
.

the frequentist Ðts, we have followed the classical statistical
procedures described by Feldman & Cousins (1998) to
guarantee frequentist coverage of our conÐdence regions in
the physically allowed part of parameter space. Note that
throughout the previous cosmology literature, completely
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FIG. 7.ÈBest-Ðt conÐdence regions in the plane for our primary)
M

-)"analysis, Ðt C. The 68%, 90%, 95%, and 99% statistical conÐdence regions
in the plane are shown, after integrating the four-dimensional Ðt)

M
È)"over and a. (See footnote 11 for a link to the table of this two-M

Bdimensional probability distribution.) See Fig. 5e for limits on the small
shifts in these contours due to identiÐed systematic uncertainties. Note that
the spatial curvature of the universeÈopen, Ñat, or closedÈis not determi-
native of the future of the universeÏs expansion, indicated by the near-
horizontal solid line. In cosmologies above this near-horizontal line the
universe will expand forever, while below this line the expansion of the
universe will eventually come to a halt and recollapse. This line is not quite
horizontal, because at very high mass density there is a region where the
mass density can bring the expansion to a halt before the scale of the
universe is big enough that the mass density is dilute with respect to the
cosmological constant energy density. The upper-left shaded region,
labeled ““ no big bang,ÏÏ represents ““ bouncing universe ÏÏ cosmologies with
no big bang in the past (see Carroll et al. 1992). The lower right shaded
region corresponds to a universe that is younger than the oldest heavy
elements (Schramm 1990) for any value of km s~1 Mpc~1.H0 º 50

on that day : the distribution, abundances, excitations, and
velocities of the elements that the photons encounter as they
leave the expanding photosphere all imprint on the spectra.
So far, the high-redshift supernovae that have been studied
have light-curve shapes just like those of low-redshift super-
novae (see Goldhaber et al. 1999), and their spectra show
the same features on the same day of the light curve as their
low-redshift counterparts having comparable light-curve
width. This is true all the way out to the z \ 0.83 limit of the
current sample (Perlmutter et al. 1998b). We take this as a
strong indication that the physical parameters of the super-
nova explosions are not evolving signiÐcantly over this time
span.

Theoretically, evolutionary e†ects might be caused by
changes in progenitor populations or environments. For

example, lower metallicity and more massive SN Ia-
progenitor binary systems should be found in younger
stellar populations. For the redshifts that we are consider-
ing, z \ 0.85, the change in average progenitor masses may
be small (Ruiz-Lapuente, Canal, & Burkert 1997 ; Ruiz-
Lapuente 1998). However, such progenitor mass di†erences
or di†erences in typical progenitor metallicity are expected
to lead to di†erences in the Ðnal C/O ratio in the exploding
white dwarf and hence a†ect the energetics of the explosion.
The primary concern here would be if this changed the
zero-point of the width-luminosity relation. We can look for
such changes by comparing light curve rise times between
low- and high-redshift supernova samples, since this is a
sensitive indicator of explosion energetics. Preliminary indi-
cations suggest that no signiÐcant rise-time change is seen,
with an upper limit of day for our sample (see forth-[1
coming high-redshift studies of Goldhaber et al. 1999 and
Nugent et al. 1998 and low-redshift bounds from Vacca &
Leibundgut 1996, Leibundgut et al. 1996b, and Marvin &
Perlmutter 1989). This tight a constraint on rise-time
change would theoretically limit the zero-point change to
less than D0.1 mag (see Nugent et al. 1995 ; Ho" Ñich,
Wheeler, & Thielemann 1998).

A change in typical C/O ratio can also a†ect the ignition
density of the explosion and the propagation characteristics
of the burning front. Such changes would be expected to
appear as di†erences in light-curve timescales before and
after maximum & Khokhlov 1996). Preliminary(Ho" Ñich
indications of consistency between such low- and high-
redshift light-curve timescales suggest that this is probably
not a major e†ect for our supernova samples (Goldhaber et
al. 1999).

Changes in typical progenitor metallicity should also
directly cause some di†erences in SN Ia spectral features

et al. 1998). Spectral di†erences big enough to(Ho" Ñich
a†ect the B- and V -band light curves (see, e.g., the extreme
mixing models presented in Fig. 9 of et al. 1998)Ho" Ñich
should be clearly visible for the best signal-to-noise ratio
spectra we have obtained for our distant supernovae, yet
they are not seen (Filippenko et al. 1998 ; Hook et al. 1998).
The consistency of slopes in the light-curve width-
luminosity relation for the low- and high-redshift super-
novae can also constrain the possibility of a strong
metallicity e†ect of the type that et al. (1998)Ho" Ñich
describes.

An additional concern might be that even small changes
in spectral features with metallicity could in turn a†ect the
calculations of K-corrections and reddening corrections.
This e†ect, too, is very small, less than 0.01 mag, for photo-
metric observations of SNe Ia conducted in the rest-frame B
or V bands (see Figs. 8 and 10 of et al. 1998), as isHo" Ñich
the case for almost all of our supernovae. (Only two of our
supernovae have primary observations that are sensitive to
the rest-frame U band, where the magnitude can change by
D0.05 mag, and these are the two supernovae with the
lowest weights in our Ðts, as shown by the error bars of Fig.
2. In general the I-band observations, which are mostly
sensitive to the rest-frame B band, provide the primary light
curve at redshifts above 0.7.)

The above analyses constrain only the e†ect of
progenitor-environment evolution on SN Ia intrinsic lumi-
nosity ; however, the extinction of the supernova light could
also be a†ected, if the amount or character of the dust
evolves, e.g., with host galaxy age. In ° 4.1, we limited the

Perlmutter et al., 1999



The need for dark energy

SNIa: the Universe is currently in an accelerated 
expansion phase.

Also:
CMB indicates flat universe, and Ωm < 1 (lensing, BAO…)

Age of the universe constraints combined with H0 + flatness

Observation of Integrated Sachs-Wolfe effect

General consistency of the ΛCDM model with all observations



Why is the expansion accelerating?

Extra component? 
Equation of state p = wρ, with w < -1/3

Modified general relativity?

ose models have different impact on the Universe 
expansion history and on the growth of structures.

Goal of current projects: characterize as best as possible 
those effects, using clusters, baryon acoustic oscillations, 
supernovae, gravitational lensing, CMB…



Theoretical framework

Homogen and isotropic universe (> 100 Mpc)

General relativity

FLRW metric

➥ Friedmann equations for each component



Standard model ingredients

Baryons:  Ωb

Dark matter (cold): Ωm

Neutrinos: Ων (< 10–2)
Photons: Ωγ (~ 6. 10–5)
Dark energy: ΩΛ

equation of state p = wρ, w < –1/3

Curvature, or not: Ωk = 1 – ΣΩi

ΛCDM: w=–1, Ωk = 0.

In units of the
critical density

Ωtot = 1 ⇔ flat
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dark energy, w can differ from −1 and vary in time. [Hereafter, w without a
subscript refers to dark energy.]

The present energy density of a flat Universe (k = 0), ρcrit ≡ 3H2
0/8πG =

1.88× 10−29h2gm cm−3 = 8.10× 10−47h2 GeV4, is known as the critical density;
it provides a convenient means of normalizing cosmic energy densities, where
Ωi = ρi(t0)/ρcrit. For a positively curved Universe, Ω0 ≡ ρ(t0)/ρcrit > 1 and for
a negatively curved Universe Ω0 < 1. The present value of the curvature radius,
Rcurv ≡ a/

√

|k|, is related to Ω0 and H0 by Rcurv = H−1
0 /

√

|Ω0 − 1|, and the
characteristic scale H−1

0 ≈ 3000h−1 Mpc is known as the Hubble radius. Because
of the evidence from the CMB that the Universe is nearly spatially flat (see Fig.
8), we shall assume k = 0 except where otherwise noted.
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Figure 1: Evolution of radiation, matter, and dark energy densities with redshift.
For dark energy, the band represents w = −1 ± 0.2.

Fig. 1 shows the evolution of the radiation, matter, and dark energy densities
with redshift. The Universe has gone through three distinct eras: radiation-
dominated, z ! 3000; matter-dominated, 3000 ! z ! 0.5; and dark-energy
dominated, z ∼< 0.5. The evolution of the scale factor is controlled by the

dominant energy form: a(t) ∝ t2/3(1+w) (for constant w). During the radiation-
dominated era, a(t) ∝ t1/2; during the matter-dominated era, a(t) ∝ t2/3; and
for the dark energy-dominated era, assuming w = −1, asymptotically a(t) ∝
exp(Ht). For a flat Universe with matter and vacuum energy, the general solu-
tion, which approaches the latter two above at early and late times, is a(t) =
(ΩM/ΩVAC)1/3(sinh[3

√
ΩVACH0t/2])2/3.

The deceleration parameter, q(z), is defined as

q(z) ≡ −
ä

aH2
=

1

2

∑

i

Ωi(z) [1 + 3wi(z)] (6)

where Ωi(z) ≡ ρi(z)/ρcrit(z) is the fraction of critical density in component i
at redshift z. During the matter- and radiation-dominated eras, wi > 0 and

w = −1 ± 0.2



Alternatives

Dark energy equation of state:
w ≠ –1

non constant w

(expected in theories like quintessence)

Modified general relativity
f(R) theories, extra dimensions…

Cosmological principle revision
Inhomogeneous universe…
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Figure 2: For a flat Universe, the effect of dark energy upon cosmic distance (left)
and volume element (right) is controlled by ΩM and w.

historical significance and utility; it is not useful today since objects as distant
as redshift z ∼ 2 are being used to probe the expansion history. However, it
does illustrate the general principle: the first term on the r.h.s. represents the
linear Hubble expansion, and the deviation from a linear relation reveals the
deceleration (or acceleration).

The angular-diameter distance dA, the distance inferred from the angular size
δθ of a distant object of fixed diameter D, is defined by dA ≡ D/δθ = r(z)/(1 +
z) = dL/(1 + z)2. The use of “standard rulers” (objects of fixed intrinsic size)
provides another means of probing the expansion history, again through r(z).

The cosmological time, or time back to the Big Bang, is given by

t(z) =

∫ t(z)

0
dt′ =

∫ ∞

z

dz′

(1 + z′)H(z′)
. (13)

While the present age in principle depends upon the expansion rate at very early
times, the rapid rise of H(z) with z — a factor of 30,000 between today and the
epoch of last scattering, when photons and baryons decoupled, at zLS # 1100,
t(zLS) # 380, 000 years — makes this point moot.

Finally, the comoving volume element per unit solid angle dΩ is given by

d2V

dzdΩ
= r2 dr

dz

1√
1 − kr2

=
r2(z)

H(z)
. (14)

For a set of objects of known comoving density n(z), the comoving volume element
can be used to infer r2(z)/H(z) from the number counts per unit redshift and solid
angle, d2N/dzdΩ = n(z)d2V/dzdΩ. The dependence of the comoving volume
element upon ΩM and w is shown in the right panel of Fig. 2.

2.3 Growth of structure and ΛCDM

A striking success of the consensus cosmology is its ability to account for the
observed structure in the Universe, provided that the dark matter is composed of

distances
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can be used to infer r2(z)/H(z) from the number counts per unit redshift and solid
angle, d2N/dzdΩ = n(z)d2V/dzdΩ. The dependence of the comoving volume
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2.3 Growth of structure and ΛCDM

A striking success of the consensus cosmology is its ability to account for the
observed structure in the Universe, provided that the dark matter is composed of

volume element

dA = r(z)/(1+z)
dL = (1+z) r(z) 



Some observables

Structure growth

Dark Energy 9
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Figure 3: Growth of linear density perturbations in a flat universe with dark
energy. Note that the growth of perturbations ceases when dark energy begins
to dominate, 1 + z = (ΩM/ΩDE)1/3w.

slowly moving particles, known as cold dark matter (CDM), and that the initial
power spectrum of density perturbations is nearly scale-invariant, P (k) ∼ knS

with spectral index nS " 1, as predicted by inflation (Springel, Frenk & White
2006). Dark energy affects the development of structure by its influence on the
expansion rate of the Universe when density perturbations are growing. This
fact and the quantity and quality of large-scale structure data make structure
formation a sensitive probe of dark energy.

In GR the growth of small-amplitude, matter-density perturbations on length
scales much smaller than the Hubble radius is governed by

δ̈k + 2H δ̇k − 4πGρMδk = 0 , (15)

where the perturbations δ(x, t) ≡ δρM(x, t)/ρ̄M(t) have been decomposed into
their Fourier modes of wavenumber k, and matter is assumed to be pressureless
(always true for the CDM portion and valid for the baryons on mass scales larger
than 105 M! after photon-baryon decoupling). Dark energy affects the growth
through the “Hubble damping” term, 2H δ̇k.

The solution to Eq. (15) is simple to describe during the three epochs of ex-
pansion discussed earlier: δk(t) grows as a(t) during the matter-dominated epoch
and is approximately constant during the radiation-dominated and dark energy-
dominated epochs. The key feature here is the fact that once accelerated expan-
sion begins, the growth of linear perturbations effectively ends, since the Hubble
damping time becomes shorter than the timescale for perturbation growth.

The impact of the dark energy equation-of-state parameter w on the growth of
structure is more subtle and is illustrated in Fig. 3. For larger w and fixed dark
energy density ΩDE, dark energy comes to dominate earlier, causing the growth of
linear perturbations to end earlier; this means the growth factor since decoupling
is smaller and that to achieve the same amplitude by today, the perturbation
must begin with larger amplitude and is larger at all redshifts until today. The
same is true for larger ΩDE and fixed w. Finally, if dark energy is dynamical (not
vacuum energy), then in principle it can be inhomogeneous, an effect ignored



The main probes

Supernovae

Galaxy clusters

Baryon acoustic oscillations

Gravitational lenses



CMB

CMB probes the Universe at z=1000
Not directly sensitive to dark energy, subdominant at that stage

Very important to li degeneracies between cosmological parameters

Provides the amplitude of density fluctuations at z=1000

For BAO, allows to measure the sound horizon at z=1000

CMB foregrounds can probe dark energy (more 
on this later)



Supernovae

SN Ia = standardizable candles

➥Measure of dL(z)

1998 : confirm previous hints towards ΛCDM

Current SNIa sample from local searches, SNLS, 
SDSS, HST…
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Supernovae

Latest surveys are limited by systematic errors
Calibration, K-correction…

Astrophysical uncertainties : environment (metallicity), age (stellar 
evolution paths)…

Can very high statistics (LSST) allow testing for 
systematics?



Galaxy clusters

Cluster density (for a given mass limit) is very 
sensitive to both the expansion of the Universe and 
the growth of structures.
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Figure 9: Examples of cluster data used in recent cosmological work. Top: Measured mass functions of
clusters at low and high redshifts are compared with predictions of a flat, ΛCDM model and an open model
without dark energy (from Vikhlinin et al. 2009b). Bottom: fgas(z) measurements for relaxed clusters are
compared for a Ωm = 0.3, ΩΛ = 0.7, h = 0.7 model (left, consistent with the expectation of no evolution) and
a Ωm = 1.0, ΩΛ = 0.0, h = 0.5 model (right; from Allen et al. 2008). For purposes of illustration, cosmology-
dependent derived quantities are shown (mass and fgas); in practice, model predictions are compared with
cosmology-independent measurements.

cosmological models. In particular, an open universe with no dark energy clearly under-predicts the evolution
of the mass function over the redshift range of the data.

The optically selected maxBCG sample (Koester et al. 2007) employed by Rozo et al. (2010) probes a
different part of the cluster population; it is restricted to lower redshifts than the X-ray samples described
above (0.1 < z < 0.3), but extends to lower masses (M500 > 7 × 1013 M!). This lower effective mass limit,
which changes less strongly with redshift compared to X-ray surveys, makes the maxBCG sample significantly
larger than the others, with > 104 clusters divided into 9 bins based on optical richness. Mean masses for 5
richness ranges were estimated through a weak gravitational lensing analysis of stacked clusters, providing
information from which to constrain the richness–mass relation. The cosmological analysis accounts for the
covariance between cluster counts in each richness bin and the mean lensing mass estimates.

The results obtained by these three groups on flat ΛCDM and constant w models are summarized in
Table 2. Note that, for the two works which fit w models, the results on Ωm and σ8 are dominated by the
low-redshift data and so are not degraded noticeably by the introduction of w as a free parameter; thus all
three sets of constraints are directly comparable. The agreement between the different works, as well as
others listed in Table 2, is encouraging; in particular, the close agreement in the constraints on σ8 reflects
the relatively recent convergence in cluster mass estimates using different techniques, and our improved
understanding of the relevant systematics (Section 3.3; see also, e.g., Henry et al. 2009). Importantly, the

26
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Figure 13: Predicted cluster counts for a survey covering 4,000 sq. deg. that is
sensitive to halos more massive than 2 × 1014M!, for 3 flat cosmological models
with fixed ΩM = 0.3 and σ8 = 0.9. Lower panel shows differences between the
models relative to the statistical errors. From Mohr (2005).

Fig. 13 shows the sensitivity to the dark energy equation-of-state parameter of
the expected cluster counts for the South Pole Telescope and the Dark Energy
Survey. At modest redshift, z < 0.6, the differences are dominated by the volume
element; at higher redshift, the counts are most sensitive to the growth rate of
perturbations.

The primary systematic concerns are uncertainties in the mass-observable rela-
tion p(O|M,z) and in the selection function f(O, z). The strongest cosmological
constraints arise for those cluster observables that are most strongly correlated
with mass, i.e., for which p(O|M,z) is narrow for fixed M , and which have a well-
determined selection function. There are several independent techniques both for
detecting clusters and for estimating their masses using observable proxies. Fu-
ture surveys will aim to combine two or more of these techniques to cross-check
cluster mass estimates and thereby control systematic error. Measurement of
the spatial correlations of clusters and of the shape of the mass function provide
additional internal calibration of the mass-observable relation (Lima & Hu 2004,
Majumdar & Mohr 2004).

With multi-band CCD imaging, clusters can be efficiently detected as enhance-
ments in the surface density of early-type galaxies, and their observed colors
provide photometric redshift estimates that substantially reduce the projection
effects that plagued early optical cluster catalogs (Koester et al. 2007, Yee &
Gladders 2002). Weak lensing and dynamical studies show that cluster richness
correlates with cluster mass (Johnston et al. 2007) and can be used to statisti-
cally calibrate mass-observable relations. Most of the cluster baryons reside in
hot, X-ray emitting gas in approximate dynamical equilibrium in the dark mat-
ter potential well. Since X-ray luminosity is proportional to the square of the
gas density, X-ray clusters are high-contrast objects, for which the selection func-

M > 2 1014 Mo
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Figure 18: Left: Joint 68.3% and 95.4% confidence regions for departures from a General Relativistic growth
history, parameterized by γ, and a ΛCDM expansion history, parameterized by w. The analysis uses a
combination of cluster growth (XLF; Mantz et al. 2010b), fgas (Allen et al. 2008), WMAP (Dunkley et al.
2009), SNIa (Kowalski et al. 2008) and BAO (Percival et al. 2007) data. From Rapetti et al. (2010). Right:
Constraints on neutrino mass and the amplitude of density perturbations for ΛCDM models, including global
curvature and marginalized over the amplitude and spectral index of primordial tensor perturbations. Gold
contours correspond to the same combination of data as in the left panel; blue contours show the strong
degeneracy between neutrino mass and σ8 that exists when cluster growth data are not included in the
analysis. From Mantz, Allen & Rapetti (2010).

calibrated using N-body simulations. These include the self-accelerated branch (Chan & Scoccimarro 2009;
Schmidt 2009b) and normal branch (Schmidt 2009a) of DGP gravity, and an f(R) model (Schmidt et al.
2009). Constraints on the latter model using the observed local cluster abundance and other data are
presented by Schmidt, Vikhlinin & Hu (2009).

An alternative to evaluating specific gravity theories is to adopt a convenient, parameterized description
for the growth of structure. This can then be used to constrain departures from the predictions of ΛCDM+GR
(Nesseris & Perivolaropoulos 2008). At late-times, the linear growth rate can be simply parametrized as
(e.g. Linder 2005)

d ln δ

d ln a
= Ωm(a)

γ , (26)

where δ is the density contrast and γ the growth index. Conveniently, GR predicts a nearly constant and
scale-independent value of γ ≈ 0.55 for models consistent with current expansion data. As in the case of w
for dark energy models, constraining γ constitutes a phenomenological approach to studying gravity. Rapetti
et al. (2009, 2010) report constraints on departures from GR on cosmic scales using this parameterization
with cluster data. Their results are simultaneously consistent with GR (γ ∼ 0.55) and ΛCDM (w = −1) at
the 68 per cent confidence level (left panel of Figure 18).

5.3 Neutrinos

The mass of neutrinos directly influences the growth of cosmic structure, since any particle with non-zero
mass at some point cools from a relativistic state, in which it effectively suppresses structure formation,
to a non-relativistic state, in which it actively participates in the growth of structure (details are reviewed
in Lesgourgues & Pastor 2006). In the standard scenerio where the neutrino species have approximately
degenerate mass, the species-summed mass,

∑

mν , is sufficient to describe their cosmological effects.
Although current data lack the precision to directly detect the effect of neutrino mass on the time-

dependent growth of clusters, cluster data do play a key role in cosmological constraints on neutrinos when
combined with CMB observations. On its own, the CMB can place only a relatively weak upper bound on
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Parameterized departure
from GR / ΛCDM+w

ΛCDM+w

Figure 10: Left: Joint 68.3% and 95.4% confidence regions for the mean matter density and perturbation
amplitude from the abundance of clusters in the maxBCG sample (z < 0.3) compared with those fromWMAP
data (Dunkley et al. 2009) for spatially flat ΛCDM models. The shaded region indicates the combination
of the two data sets. From Rozo et al. (2010). Right: Constraints on the dark energy density and equation
of state from the abundance and growth of clusters in the 400 Square Degree sample (z < 0.9) compared
with those from WMAP, SNIa (Davis et al. 2007) and BAO (Eisenstein et al. 2005; Percival et al. 2007) for
spatially flat, constant w models. Note that, contrary to the convention followed in the other figures, the
shaded regions in the right panel indicate only 39.3% confidence. The tight contraints from WMAP compared
with Figure 11 result from the fact that a simplified analysis was used, in particular neglecting the influence
of dark energy on the Integrated Sachs-Wolfe effect (e.g. Spergel et al. 2007). From Vikhlinin et al. (2009b).

Figure 11: Joint 68.3% and 95.4% confidence regions for the dark energy equation of state and mean matter
density (left) or perturbation amplitude (right) from the abundance and growth of RASS clusters at z < 0.5
(labeled XLF; Mantz et al. 2010b) and fgas measurements at z < 1.1 (Allen et al. 2008), compared with
those from WMAP (Dunkley et al. 2009), SNIa (Kowalski et al. 2008) and BAO (Percival et al. 2010) for
spatially flat, constant w models. Combined results from RASS clusters and WMAP are shown in gray in the
right panel; gold contours in both panels show the combination of all data sets. The BAO-only constraint
differs from that in Figure 10 due to the use of different priors. Adapted from Mantz et al. (2010b, the BAO
constraints in the left panel have been updated to reflect more recent data).
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Galaxy clusters

Mass are determined from scaling relations
Detection/observations through 
visible imaging, lensing, X, SZ effect

Complex gastrophysics



Baryon acoustic oscillations

A peak in the matter correlation function, relic of 
sound waves propagating in the primordial plasma, 
is used as a distance standard.



CDM

No Dark Matter

BAO with and without 
dark matter

Baryon Acoustic Oscillations 5

Fig. 2.— The large-scale redshift-space correlation function of the
SDSS LRG sample. The error bars are from the diagonal elements
of the mock-catalog covariance matrix; however, the points are cor-
related. Note that the vertical axis mixes logarithmic and linear
scalings. The inset shows an expanded view with a linear vertical
axis. The models are Ωmh2 = 0.12 (top, green), 0.13 (red), and
0.14 (bottom with peak, blue), all with Ωbh2 = 0.024 and n = 0.98
and with a mild non-linear prescription folded in. The magenta
line shows a pure CDM model (Ωmh2 = 0.105), which lacks the
acoustic peak. It is interesting to note that although the data ap-
pears higher than the models, the covariance between the points is
soft as regards overall shifts in ξ(s). Subtracting 0.002 from ξ(s)
at all scales makes the plot look cosmetically perfect, but changes
the best-fit χ2 by only 1.3. The bump at 100h−1 Mpc scale, on the
other hand, is statistically significant.

two samples on large scales is modest, only 15%. We make
a simple parameterization of the bias as a function of red-
shift and then compute b2 averaged as a function of scale
over the pair counts in the random catalog. The bias varies
by less than 0.5% as a function of scale, and so we conclude
that there is no effect of a possible correlation of scale with
redshift. This test also shows that the mean redshift as a
function of scale changes so little that variations in the
clustering amplitude at fixed luminosity as a function of
redshift are negligible.

3.2. Tests for systematic errors

We have performed a number of tests searching for po-
tential systematic errors in our correlation function. First,
we have tested that the radial selection function is not in-
troducing features into the correlation function. Our selec-
tion function involves smoothing the observed histogram
with a box-car smoothing of width ∆z = 0.07. This cor-
responds to reducing power in the purely radial mode at
k = 0.03h Mpc−1 by 50%. Purely radial power at k = 0.04
(0.02)h Mpc−1 is reduced by 13% (86%). The effect of this
suppression is negligible, only 5× 10−4 (10−4) on the cor-
relation function at the 30 (100) h−1 Mpc scale. Simply
put, purely radial modes are a small fraction of the total
at these wavelengths. We find that an alternative radial
selection function, in which the redshifts of the random

Fig. 3.— As Figure 2, but plotting the correlation function times
s2. This shows the variation of the peak at 20h−1 Mpc scales that is
controlled by the redshift of equality (and hence by Ωmh2). Vary-
ing Ωmh2 alters the amount of large-to-small scale correlation, but
boosting the large-scale correlations too much causes an inconsis-
tency at 30h−1 Mpc. The pure CDM model (magenta) is actually
close to the best-fit due to the data points on intermediate scales.

catalog are simply picked randomly from the observed red-
shifts, produces a negligible change in the correlation func-
tion. This of course corresponds to complete suppression
of purely radial modes.

The selection of LRGs is highly sensitive to errors in the
photometric calibration of the g, r, and i bands (Eisenstein
et al. 2001). We assess these by making a detailed model
of the distribution in color and luminosity of the sample,
including photometric errors, and then computing the vari-
ation of the number of galaxies accepted at each redshift
with small variations in the LRG sample cuts. A 1% shift
in the r − i color makes a 8-10% change in number den-
sity; a 1% shift in the g − r color makes a 5% changes in
number density out to z = 0.41, dropping thereafter; and
a 1% change in all magnitudes together changes the num-
ber density by 2% out to z = 0.36, increasing to 3.6% at
z = 0.47. These variations are consistent with the changes
in the observed redshift distribution when we move the
selection boundaries to restrict the sample. Such photo-
metric calibration errors would cause anomalies in the cor-
relation function as the square of the number density vari-
ations, as this noise source is uncorrelated with the true
sky distribution of LRGs.

Assessments of calibration errors based on the color of
the stellar locus find only 1% scatter in g, r, and i (Ivezić
et al. 2004), which would translate to about 0.02 in the
correlation function. However, the situation is more favor-
able, because the coherence scale of the calibration errors
is limited by the fact that the SDSS is calibrated in regions
about 0.6◦ wide and up to 15◦ long. This means that there
are 20 independent calibrations being applied to a given
6◦ (100h−1 Mpc) radius circular region. Moreover, some
of the calibration errors are even more localized, being
caused by small mischaracterizations of the point spread
function and errors in the flat field vectors early in the
survey (Stoughton et al. 2002). Such errors will average
down on larger scales even more quickly.

The photometric calibration of the SDSS has evolved

Eisenstein et al., 2005



Baryon acoustic oscillations

Few systematic effects.

Can use a variety of probes depending on redshi 
(LRG, ELG, Lyman alpha forest, QSO) — each 
with a different bias.

Limited power — rapidly cosmic variance limited. 
3D measurement requires spectroscopy.

Redshi space distorsions is a byproduct giving 
access to structure growth.



Lensing

Zwicky, 1937



Lensing regimes and techniques

Strong lensing : multiple images and arcs.
Recovery of cluster total mass and mass profile

Weak shear : statistical measurement of galaxy shape 
distorsion.

Magnification bias (cosmic magnification) : change 
in the luminosity function of the background 
population, correlated with the foreground density.

Both are sensitive to the growth of structure, especially by comparing 
the effect at various redshis (lensing tomography).



Lensing caveats

On the long run, will be a very powerful technique
Tomography, combination with other probes, higher-order (3+) 
statistics, lensing peaks…

Main sources of systematic effects:
PSF measurements (atmospheric/instrumental effects)

Photometric redshis

Intrinsic galaxy alignments



Other probes

Lyman-α forest fluctuations

Alcock-Paczynski tests

Dark Energy anisotropies

Equivalence principle tests to check GR

CMB foregrounds like ISW
measured by cross-correlation with large scale structure tracers

21-cm surveys (SKA and precursors) are massive 
and deep spectroscopic surveys



e future does not lie 
in individual probes 
but in data merging
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lium abundances measured from stars (e.g., Sun; see
Asplund et al. 2009, for a recent review) and HII regions
are, in general, larger than the primordial abundance.
On the other hand, as we have just shown, the CMB
data provide a lower limit on Yp. Even with a very con-
servative hard prior, Yp < 0.3, we find 0.23 < Yp <
0.3 (68% CL)31. Therefore, a combination of the CMB
and the solar constraints on Yp offers a new way for test-
ing the predictions of theory of the big bang nucleosyn-
thesis (BBN). For example, the BBN predicts that the
helium abundance is related to the baryon-to-photon ra-
tio, η, and the number of additional neutrino species (or
any other additional relativistic degrees of freedom) dur-
ing the BBN epoch, ∆Nν ≡ Nν−3, as (see equation (11)
of Steigman 2008)

Yp = 0.2485 + 0.0016[(η10 − 6) + 100(S − 1)], (55)

where S ≡
√

1 + (7/43)∆Nν # 1 + 0.081∆Nν and
η10 ≡ 1010η = 273.9(Ωbh2) = 6.19 ± 0.15 (68% CL;
WMAP+BAO+H0). (See Simha & Steigman 2008, for
more discussion on this method.) For ∆Nν = 1, the he-
lium abundance changes by ∆Yp = 0.013, which is much
smaller than our error bar, but is comparable to the ex-
pected error bar from Planck (Ichikawa et al. 2008).
There have been several attempts to measure Yp

from the CMB data (Trotta & Hansen 2004; Huey et al.
2004; Ichikawa & Takahashi 2006; Ichikawa et al. 2008;
Dunkley et al. 2009). The previous best-limit is Yp =

0.25+0.10(+0.15)
−0.07(−0.17) at 68% CL (95% CL), which was ob-

tained by Ichikawa et al. (2008) from the WMAP 5-year
data combined with ACBAR (Reichardt et al. 2009),
BOOMERanG (Jones et al. 2006; Piacentini et al. 2006;
Montroy et al. 2006), and Cosmic Background Imager
(CBI; Sievers et al. 2007). Note that the likelihood func-
tion of Yp is non-Gaussian, with a tail extending to
Yp = 0; thus, the level of significance of detection was
less than 3σ.

5. CONSTRAINTS ON PROPERTIES OF DARK ENERGY

In this section, we provide limits on the properties of
dark energy, characterized by the equation of state pa-
rameter, w. We first focus on constant (time indepen-
dent) equation of state in a flat universe (Section 5.1)
and a curved universe (Section 5.2). We then constrain a
time-dependent w given by w(a) = w0+wa(1−a), where
a = 1/(1 + z) is the scale factor, in Section 5.3. Next,
we provide the 7-year “WMAP normalization prior” in
Section 5.4, which is useful for constraining w (as well as
the mass of neutrinos) from the growth of cosmic den-
sity fluctuations. (See, e.g., Vikhlinin et al. 2009b, for
an application of the 5-year normalization prior to the
X-ray cluster abundance data.) In Section 5.5, we pro-
vide the 7-year “WMAP distance prior,” which is useful
for constraining a variety of time-dependent w models
for which the Markov Chain Monte Carlo exploration of
the parameter space may not be available. (See, e.g.,

31 The upper limit is set by the hard prior. The 68% lower limit,
Yp,min = 0.23, is found such that the integral of the posterior
likelihood of Yp in Yp,min ≤ Yp < 0.3 is 68% of the integral in
0 ≤ Yp < 0.3. Similarly, the 95% CL lower limit is Yp > 0.14 and
the 99% CL lower limit is Yp > 0.065.

Fig. 12.— Joint two-dimensional marginalized constraint on the
time-independent (constant) dark energy equation of state, w, and
the curvature parameter, Ωk. The contours show the 68% and
95% CL from WMAP+BAO+H0 (red), WMAP+BAO+H0+D∆t
(black), and WMAP+BAO+SN (purple).

Li et al. 2008; Wang 2008, 2009; Vikhlinin et al. 2009b,
for applications of the 5-year distance prior.)
We give a summary of our limits on dark energy pa-

rameters in Table 4.

5.1. Constant Equation of State: Flat Universe

In a flat universe, Ωk = 0, an accurate determina-
tion of H0 helps improve a limit on a constant equa-
tion of state, w (Spergel et al. 2003; Hu 2005). Using
WMAP+BAO+H0, we find

w = −1.10± 0.14 (68% CL),

which improves to w = −1.08 ± 0.13 (68% CL) if
we add the time-delay distance out to the lens system
B1608+656 (Suyu et al. 2010, see Section 3.2.5). These
limits are independent of high-z Type Ia supernova data.
The high-z supernova data provide the most strin-

gent limit on w. Using WMAP+BAO+SN, we find
w = −0.980±0.053 (68% CL). The error does not include
systematic errors in supernovae, which are comparable
to the statistical error (Kessler et al. 2009; Hicken et al.
2009b); thus, the error in w from WMAP+BAO+SN
is about a half of that from WMAP+BAO+H0 or
WMAP+BAO+H0+D∆t.
The cluster abundance data are sensitive to w via the

comoving volume element, angular diameter distance,
and growth of matter density fluctuations (Haiman et al.
2001). By combining the cluster abundance data and
the 5-year WMAP data, Vikhlinin et al. (2009b) found
w = −1.08 ± 0.15 (stat) ± 0.025 (syst) (68% CL) for a
flat universe. By adding BAO of Eisenstein et al. (2005)
and the supernova data of Davis et al. (2007), they found
w = −0.991 ± 0.045 (stat) ± 0.039 (syst) (68% CL).
These results using the cluster abundance data (also see
Mantz et al. 2010c) agree well with our corresponding
WMAP+BAO+H0 and WMAP+BAO+SN limits.

5.2. Constant Equation of State: Curved Universe

(w constant)

Komatsu et al., 2011

Classical constraints combination

Figure 10: Left: Joint 68.3% and 95.4% confidence regions for the mean matter density and perturbation
amplitude from the abundance of clusters in the maxBCG sample (z < 0.3) compared with those fromWMAP
data (Dunkley et al. 2009) for spatially flat ΛCDM models. The shaded region indicates the combination
of the two data sets. From Rozo et al. (2010). Right: Constraints on the dark energy density and equation
of state from the abundance and growth of clusters in the 400 Square Degree sample (z < 0.9) compared
with those from WMAP, SNIa (Davis et al. 2007) and BAO (Eisenstein et al. 2005; Percival et al. 2007) for
spatially flat, constant w models. Note that, contrary to the convention followed in the other figures, the
shaded regions in the right panel indicate only 39.3% confidence. The tight contraints from WMAP compared
with Figure 11 result from the fact that a simplified analysis was used, in particular neglecting the influence
of dark energy on the Integrated Sachs-Wolfe effect (e.g. Spergel et al. 2007). From Vikhlinin et al. (2009b).

Figure 11: Joint 68.3% and 95.4% confidence regions for the dark energy equation of state and mean matter
density (left) or perturbation amplitude (right) from the abundance and growth of RASS clusters at z < 0.5
(labeled XLF; Mantz et al. 2010b) and fgas measurements at z < 1.1 (Allen et al. 2008), compared with
those from WMAP (Dunkley et al. 2009), SNIa (Kowalski et al. 2008) and BAO (Percival et al. 2010) for
spatially flat, constant w models. Combined results from RASS clusters and WMAP are shown in gray in the
right panel; gold contours in both panels show the combination of all data sets. The BAO-only constraint
differs from that in Figure 10 due to the use of different priors. Adapted from Mantz et al. (2010b, the BAO
constraints in the left panel have been updated to reflect more recent data).
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Some data-level combinations

Cross-correlation of weak-lensing and 
spectroscopic surveys is more powerful than a 
posteriori combination

Degeneracies are broken, essentially through calibration of the bias 
of the spectroscopic galaxies via their lensing of photometric galaxies

Comparing growth measurements from lensing 
and redshi space distorsion tests modified gravity

Cai & Bernstein 2011

Reyes et al. 2010



Some data-level combinations

If two surveys measure a shear field on the same sky 
patch, the shear cross-correlation will have less 
systematic effects that the auto-correlation

cf XSPECT techniques for CMB

If one of the surveys is from space, and the other 
one is from ground and deeper, they probe the 
same shear field using the core or the outskirts of 
the galaxies.



Some data-level combinations

Shear and cosmic magnification can also be 
combined on the same field 

It helps reduce systematics linked to PSF 
correction, shear calibration and bias, and intrinsic 
alignment. Van Waerbeke 2010



A necessary ingredient

For lensing, as well as photometric BAO, it is 
necessary to estimate the redshi of galaxies from 
multi-band imaging : photometric redshis.

At high z (> 1.2), observations in the infrared 
significantly improve the accuracy of the photo-z

Ground-space complementarity
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SDSS-III (BOSS)

Apache Point Observatory (NM) 2.5m telescope

Dual 1000-fiber spectrograph, 3 sq deg field

e Baryon Oscillations Spectroscopic Survey is 
the main survey of SDSS-III and targets BAO with

1.5 M luminous red galaxies

160k z>2 quasars (Lyman-α forest)



SDSS-III (BOSS)

French participation group (15 researchers in 6 
labs + postdocs + students) funded by P2I, ANR 
(2009-2012 and 2013-2015), CEA, INSU/CSA 
and PNCG.

Mostly involved in BOSS but also SEGUE and 
APOGEE.

FPG took the lead on Lyman-a analysis. 



SDSS-III (BOSS)



SDSS-IV (eBOSS)

SDSS-IV : 2014+ sequel

BAO survey will fill the BOSS redshi gap

Sloan committed $10M



BigBOSS
Same goals: BAO with LRG, ELG, QSO…

4-m telescope (Mayall, Kitt Peak), 7 sqdeg FOV, 
5000-fiber spectrograph (3 arms 360–980nm) : 
Stage-IV spectroscopic survey, BOSS x10.

Last BigBOSS consortium meeting in Paris on 
october 8-10. Construction 2014, data 2017?

R&D in progress in France —consortium members: 
APC, IAP, CPPM, CPT, LAM, CEA/Irfu.

Southern sequel on twin telescope (Blanco) 
envisioned.



Dark Energy Survey (DES)

570 Mpix, 2.2 ° FOV imaging camera on 4-m 
Blanco telescope in Chile, grizY.

525 nights, 5000 sq deg survey 2012-2017.

SNIa (3k), clusters, lensing, BAO (photometric)

US/UK/Brazil/Spain/Germany

First light in September 2012. 



DESpec

A spectroscopic sequel to DES : 4000 fibers on the 
Blanco 4-m.

Comparable to BigBOSS, in the South.

Interchangeable with DECam, 2017+



HyperSuPrime Camera (Sumire/HSC)

870 MPix imaging camera, 1.5 ° diameter FOV, on 
the 8.2m Subaru telescope (Hawai).

Lensing is the main focus.

Japan (NAOJ/IPMU…)/Princeton.

First light Aug 2012.



Prime Focus Spectrograph (Sumire/PFS)

2400 fibers, 3 arms (300–1300 nm), 1.3° FOV on 
8.2 m Subaru

Japan (NAOJ/IPMU…)/US (Princeton/Caltech/
JHU)/France(LAM)/Brazil.

Dark Energy (BAO) is an important goal. Also 
galaxy formation, and Galaxy studies (Gaia).



Square Kilometer Array (SKA)

A giant radiotelescope, covering 70 MHz to 
30 GHz, 1 square kilometer collecting area spread 
over 3000 km, in South Africa and Australia.

Many science goals. Cosmology through the 
mapping of 1 billion galaxies in HI–21cm.

e South African phase two array (most relevant 
for cosmology) will be built between 2020 and 
2024.



BAO/Radio

21-cm radio detection targeting BAO for 0.5<z<3.

Low S/N, modest resolution (10 arcmin) : 
intensity mapping, not individual galaxies

R&D phase 2007-2011 IN2P3/INSU/CEA with 
CMU, CITA… Collaboration with Nançay.

2012- : Ongoing observations at Nançay. 
Construction could start: funding, partners, 
technology choice…



LSST/Euclid

See following presentations…
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