Results of the NEMO-3 experiment and the SuperNEMO proposal

Lepton number violation and neutrinoless double beta decay

François Mauger, on behalf of the SuperNEMO Collaboration

Conseil Scientifique IN2P3, Paris, May 5, 2011

- Highlights on $\beta\beta0\nu$ physics
- The NEMO-3 experiment (2003-2011)
- The SuperNEMO proposal

Double beta decay (DBD)

A second order weak interaction nuclear transition

• $\beta\beta 2\nu$ (M. Goeppert-Mayer, 1935) :

$$(Z,A) \to (Z+2,A)^{[*]} + 2e^- + 2\bar{\nu}_e \quad (\Delta L = 0)$$

• $\beta\beta 0\nu$ (W. Furry, 1939) [or $\beta\beta 0\nu\chi$] :

$$(Z, A) \to (Z + 2, A)^{[*]} + 2e^{-}[+\chi] \quad (\Delta L = 2)$$

- Lepton number violation
- Majorana (massive) neutrino
- Majoron
- \sim New Physics !

(日本) (日本) (日本)

Experimental considerations (part 1)

$$(Z,A) \to (Z+2,A)^{[*]} + 2e^{-} [+\chi]$$

Principle : measure the energy sum of the electrons in the final state to discriminate several $\beta\beta$ processes.

The $\beta\beta 0\nu[\chi]$ process

Underlying mechanisms...

The $\beta\beta$ 0 $\nu[\chi]$ process

Whatever underlying physics mechanism...

• Transition rate :

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} | M^{0\nu} |^2 \epsilon^2$$

$$G^{0\nu} : \text{phase space } (y^{-1})$$

$$M^{0\nu} : \text{nuclear matrix element}$$

$$\epsilon (\neq 0 ?) : \text{lepton-number violating}$$
factor
$$(MM) : \epsilon \equiv < m_{\nu} >$$

$$(Majoron) : \epsilon \equiv g_{ee}$$

$$(V+A) : \epsilon \equiv \lambda, \eta$$

$$(SUSY) : \epsilon \equiv \lambda'_{111} (\text{R-parity violation, exchange of a virtual gluino)}$$

The $\beta\beta$ 0 $\nu[\chi]$ process

Combining experimental approaches

 $\beta\beta0\nu$ experiments are a probe for the ν absolute mass scale and hierarchy, complementary to:

・ 同 ト ・ ヨ ト ・ ヨ ト

- ν oscillation experiments
- Direct mass measurements
- Cosmology

Experimental considerations (part 2)

Experimental facts

- $\beta\beta0\nu$ is expected to be very rare : best world limit is $T_{1/2}^{0\nu}$ >1.9 10²⁵ y for ⁷⁶Ge (HM, 1990-2003)
- Long exposure: typically 5-10 years of data taking using 1 10 kg of $\beta\beta$ isotopes
- DBD physics lies within the 100 keV 10 MeV energy range

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Experimental considerations (part 2)

Background, background, background !

There are several processes which can mimic the etaeta 0
u signal :

- (natural) radioactivity (²³⁸U, ²³²Th chains)
- Secondary processes induced by cosmic rays (cosmogenics)
- "allowed" $etaeta^2
 u$ decays in the end-point region

The NEMO 3 experiment

Neutrino Ettore Majorana Observatory

- Successor of NEMO 2 (1992-1998)
- "Tracko-calo" technique
- proposed in 1994
- R&D 1995-1999
- Commissioning (2000-2003)
- Data taking from 2003/02/14 to 2011/01/11
- 50 collaborators (France, Russia, Cz. Rep., Japan, USA, UK)
- IN2P3: CENBG, IPHC, LAL, LPC Caen
- Hosted at LSM (4800 m.w.e.)

Physics with the NEMO-3 detector

Physics goals

• Search for $\beta\beta0\nu$ decay for ¹⁰⁰Mo and ⁸²Se : Target sensitivity : $T_{1/2}^{0\nu} \simeq 10^{24}$ y (¹⁰⁰Mo) MM : $< m_{\nu} > \lesssim 0.5 - 1$ eV

- Search for $\beta\beta0\nu\chi$ (Majoron) : sensitivity $T_{1/2}^{0\nu\chi} \simeq 10^{22}$ y
- Investigate $\beta\beta 2\nu$ decay :
 - Sensitivity : $T_{1/2}^{2\nu} \simeq 10^{21}$ y
 - ► ≠ nuclei,
 - $\beta\beta$ decays to excited states,
 - SSD vs. HSD mechanisms,
 - Experimental measurement of n.m.e. $(M^{2\nu})$

(周) (日) (日)

The NEMO-3 technique : Calorimetry + Tracking

• Reconstruction of final state topology:

- ▶ e[±] individua| energy
- charged particle trajectory
- time of flight
- magnetic field curvature
- angular distribution
- vertex
- Background rejection through particle identification: e⁻, e⁺, γ, α
- Source is separated from the detector: can measure several ββ isotopes
- "tracko-calo" ≠ "pure calorimeter" technique (HM, IGEX, Cuoricino...).

The NEMO-3 detector : main characteristics

- Rn trapping facility + tent
- Low radioactivity materials
- Fréjus Underground Lab. (4800 m.w.e.)

- Source: 10 kg of $\beta\beta$ isotopes, S=20 m², $e \simeq 60$ mg/cm²
- Tracking detector: 30 m³ drift wire chamber operating in Geiger mode (6180 cells)
 gas: He+4% ethyl alcohol...
- Calorimeter: 1940 plastic scintillators coupled to low radioactivity PMTs
- Magnetic field: 25 gauss (e⁺e⁻ discrimination)
- Gamma/neutron shield: pure Iron (18 cm), borated water (30 cm, ext. wall), wood (40 cm, top+bottom)

The NEMO-3 detector: $\beta\beta$ sources

lsotope	Mass (g)	Q_{etaeta} (keV)		
$\beta\beta 0 u$ sea	$arch + \beta\beta 2i$	ν meas.		
¹⁰⁰ Mo	6914	3034		
⁸² Se	932	2995		
$\beta\beta 2 u$ me	easurement			
¹¹⁶ Cd	405	2805		
⁹⁶ Zr	9.4	3350		
¹⁵⁰ Nd	37.0	3367		
⁴⁸ Ca	7.0	4272		
¹³⁰ Te	454	2529		
External background measurement				
^{nat} Te	491	see ¹³⁰ Te		
Cu	621	-		

Enriched isotopes produced by centrifugation in Russia

etaeta event selection: the $(2e)_{internal}$ channel

$(2e)_{internal}$ selection

- 2 tracks with Q < 0
- 2 PMTs associated with tracks
- common vertex
- internal event from the foil (TOF cut)
- No unassociated PMT (γ rejection)
- No delayed short tracks (α rejection from ²¹⁴Bi-²¹⁴Po cascade)
- $\beta\beta$ rate: 1 event / 2.5 minutes

Other channels

- Able to measure its own backgrounds
- Using independant channels : $(e\gamma)$, $(e\gamma\gamma)$, $(e\gamma\alpha)$...
- Elaboration of background models

Typical etaeta 2 u candidate event @ ${\simeq}1$ MeV

$\beta\beta2\nu$ results

François Mauger

etaeta 0 u and $etaeta 0 u \chi$ results

No evidence for new physics.

$\beta\beta 0\nu$

lsotope	$T_{1/2}^{0\nu}$ (y)	$< m_{ u} >$	
	(90 %CL)	upper limit	¹⁰⁰ Mo, 3.85 years
¹⁰⁰ Mo	$> 1.0\cdot 10^{24}$ y *	0.47-0.96 eV	
⁸² Se	$> 3.2 \cdot 10^{23}$ y *	0.94-2.5 eV	
¹³⁰ Te	$>1\cdot10^{23}$ y		→ 10 ³ ²²² Rn
¹⁵⁰ Nd	$> 1.8 \cdot 10^{22}$ y		s internal BKG
116Cd	$> 1.6\cdot 10^{22}$ y		ονββ ^{τω} Μο
⁴⁸ Ca	$> 1.3 \cdot 10^{22}$ y		z 🛓
⁹⁶ Zr	$> 9.2 \cdot 10^{21}$ y		10
$etaeta$ 0 $ u\chi$			
	$T_{1/2}^{0\nu\chi}$ (y)	$< g_{ee} >$	
	(90 %CL)	upper limit	
¹⁰⁰ Mo	$> 2.7 \cdot 10^{22}$ y *	$(0.4-1.8) \ 10^{-4}$	2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
⁸² Se	$> 1.5 \cdot 10^{22}$ y *	$(0.66 - 1.9) \ 10^{-4}$	E _{TOT} (MeV)
¹⁵⁰ Nd	$> 1.52 \cdot 10^{21}$ y	$(1.7-3.0) \ 10^{-4}$	

* Best world limits

NEMO 3 summary

- $\bullet~$ Exposure \simeq 4.9 y with \lesssim 7 kg $^{100} Mo, \lesssim$ 1kg $^{82} Se$
- $\beta\beta 2\nu$ measurements for :
 - ¹⁰⁰Mo, ⁸²Se (large statistics)
 - ► Other studies : ¹¹⁶Cd, ¹⁵⁰Nd, ⁴⁸Ca, ¹³⁰Te, ⁹⁶Zr, $\beta\beta2\nu$ to excited states (¹⁰⁰Mo→¹⁰⁰Ru*), disentangling SSD/HSD mechanism (¹⁰⁰Mo), input for n.m.e. calculation
- etaeta 0
 u : no evidence for lepton number violation up to $T_{1/2}^{0
 u}\simeq 10^{24}$ y (100 Mo)
- Background is well understood (internal, external, radon)
- First "tracko-calo" experiment @ 10²⁴ y
- Two more years of data analysis before final results.
- Now dismantling the detector at LSM

・ロト ・回ト ・ヨト ・ ヨト

Future of DBD

• 1990-2010 : two experimental approaches

Calorimeter : HM, IGEX (⁷⁶Ge) : $T_{1/2}^{0\nu} > 1.5-1.9 \ 10^{25} \text{ y} (< m_{\nu} > < 200-600 \text{ meV})$ Cuoricino (¹³⁰Te) : $T_{1/2}^{0\nu} > 3 \ 10^{24} \text{ y} (< m_{\nu} > < 190-680 \text{ meV})$ Tracko-calo : NEMO3 (¹⁰⁰Mo) : $T_{1/2}^{0\nu} > 1 \ 10^{24} \text{ y} (< m_{\nu} > < 470-960 \text{ meV})$

• 2010-2020 : investigating the $< m_{
u} > =$ 50-200 meV region

$$T_{1/2}^{0
u}\gtrsim 10^{24-25} ext{ y} o 10^{26-27} ext{ y}$$

For Exposure
$$(M imes t)$$
 : \lesssim 50 kg.y $ightarrow$ \gtrsim 500 kg.y

Background :

 $b_{ROI} \simeq 10^{-1} \rightarrow 10^{-2}$ - 10^{-3} count/y/keV/kg (calorimeter) $b_{ROI} \simeq 10^{-3} \rightarrow 10^{-4}$ count/y/keV/kg (tracko-calo)

- ullet Main issue : background reduction by $\simeq 2$ orders of magnitude
- Most new projects have a step approach to reach their target sensitivity
- The scale of future etaeta experiments increases significantly (100 kg): ightarrow 20–40 M \in

< 日 > < 同 > < 三 > < 三 > < 三 > <

Experiment	lsotope	Mass	Sensitivity		Status	Start of
		(kg)	$T_{1/2}^{0\nu}$ (y)	$\langle m_{ u} \rangle$		data
			,	(meV)		taking
Pure calorimeter						
CUORE	¹³⁰ Te	200	$2.1 \cdot 10^{26}$	40-90	in prog	~ 2013
GERDA-I	⁷⁶ Ge	17.9	$3 \cdot 10^{25}$	180-440	comm.	\sim 2012
GERDA-II	⁷⁶ Ge	40	$2 \cdot 10^{26}$	70-170		\sim 2012
MAJORANA	⁷⁶ Ge	30-60	$(1-2) \cdot 10^{26}$	70-200	in prog	\sim 2013
EXO-200	¹³⁶ Xe	200	$6.4 \cdot 10^{25}$	100-200	comm.	\sim 2011
KamLAND-ZEN	¹³⁶ Xe	400	$4\cdot 10^{26}$	40-80	in prog	\sim 2011
SNO+	¹⁵⁰ N d	150	$4.5 \cdot 10^{24}$	160-218	in prog.	\sim 2014
Tracko-calorimet	er					
SuperNEMO-I	⁸² Se	7	$6.6 \cdot 10^{24}$	160-390	R&D	2014
SuperNEMO	⁸² Se	100	$1\cdot 10^{26}$	40-100		> 2015
	¹⁵⁰ Nd	100	$4 \cdot 10^{25}$	54-73		
	⁴⁸ Ca	50	$1.9 \cdot 10^{26}$	30		

The SuperNEMO proposal

supernemo

collaboration

うくで

The SuperNEMO project

- Initiated by the NEMO Collaboration in 2003
- R&D started in 2005 \rightarrow 2010 :
 - A shared R&D program : Cz. Rep., France, Japan, S. Korea, Russia, Spain, UK, USA... (100 people)
 - Improve energy resolution of the calorimeter from 15% to 8% (FWHM @ 1 MeV)
 - ▶ Master source contamination (²¹⁴Bi, ²⁰⁸TI)
 - Solve radon issues
 - ▶ Optimize the geometry (efficiency, tracker, # channels, scalability, costs...)
 - Strong support from IN2P3 : CENBG, CPPM, IPHC, LAL, LPC, LSM 1 M€+ manpower (≃ 1 M€/y) (+ ANR)
- Two steps:
 - ▶ Phase 1 (2011-2013, 4.1 M€) : demonstrator module (17 kg.y, this proposal)
 - Phase 2 (2015+, 34.5 M€) : full size experiment (500 kg.y)

The SuperNEMO project

- Re-use NEMO 3 technique and know-how (tracko-calo)
- 20 modules with 5 kg enriched $\beta\beta$ source \equiv 100 kg
- A SuperNEMO module ($\simeq 1/2$ NEMO 3)
 - Source: 5 kg (50 mg/cm²)
 - Tracking chamber : 2000 drift cells (Geiger regime)
 - ► Calorimeter : 500-700 scintillator blocks/8" PMts, 8% FWHM resolution @ 1 MeV (NEMO 3: ~15%)
 - Coil (B=25 gauss), shielding (300 t)...
 - $ho~\simeq$ 6500 electronics channels
- Baseline: ⁸²Se

 $\begin{array}{l} Q_{\beta\beta} = 2995 \,\, {\rm keV} \,\, (> E_{\gamma}(^{208}{\rm T}{\rm I})) \\ T_{1/2}^{2\nu} \simeq 10^{20} \,\, {\rm y} \,\, (> 10 \,\, \times \,\, T_{1/2}^{2\nu}(^{100}{\rm Mo})) \end{array}$

• Target sensitivity with 500 kg.y (82 Se): $T_{1/2}^{0\nu}\gtrsim 10^{26}$ y $\rightarrow < m_{\nu} > <$ 40 – 100 meV

ヘロト 人間ト ヘヨト ヘヨト

• Alternatives: ¹⁵⁰Nd, ⁴⁸Ca $Q_{\beta\beta} = 3367, 4271 \text{ keV}$ (> $E_{\gamma}(^{208}\text{Tl}), Q_{\beta}(^{214}\text{Bi, radon})$

French tasks for the construction of a SuperNEMO demonstrator module

Workpackage organization

- WP1: calorimeter (CENBG, LAL, CPPM, LPC)
- WP2: electronics (LAL, LPC)
- WP3: BiPo detectors (CENBG, LAL, LPC)
- WP4: radiopurity measurements (CENBG, CPPM, LAL)
- WP5: software (LAL, LPC)
- WP6: sources (CENBG, LSM)
- WP7: surroundings (LAL, CPPM)
- WP8: integration (LAL, CPPM, CENBG, LPC...)
- WP9: technical coordination (LAL, CPPM)

WP1: the calorimeter (1)

A crucial part of the project

- A fruitfull collaboration between IN2P3 labs (CENBG, LAL) and private companies to reach the objectives
- a lot of R&D for testing many different materials and geometries
- development of specific test benches and systematic experimental protocols

Parameter	Requirement	Results		
Optical Modules				
Granularity	$30 \times 30 \text{ cm}^2$	256.8 ² mm ²		
		308 ² mm ²		
Energy resolution	$\leq 8\%$	7.3 %		
Energy homogeneity	$\delta E/E_{central} < 2\%$	$\delta E/E_{central} < 2 \%$		
Time Resolution	250 ps (sigma)	in prog.		

æ

《曰》 《聞》 《臣》 《臣》

WP1: main achievements (2)

PMts			
Photocathode size	\geq 8 inches	8"	
QE	\geq 25% $@$ 420 nm	35%	
Linearity	Deviation <1% up to 3 MeV	<1%	
Cathode homogeneity	Deviation $< 20\%$	<10%	
Radiopurity			
²²⁶ Ra	40 mBq/kg	100 mBq/kg	
²²⁸ Th	10 mBq/kg	56 mBq/kg	
	Scintillators		
Thickness	\geq 10 cm	19 cm (mean value)	
Electron Backscattering	\leq 5% $@$ 1 MeV	5% @ 1 MeV	
Light Yield	> 6000 photons / MeV	10400 ph./MeV	
Decay Time	< 5 ns	1.8 ns	
Radiopurity			
²²⁶ Ra	< 2.5 mBq/kg	< 0.1 mBq/kg	
²²⁸ Th	< 0.6 mBq/kg	< 0.1 mBq/kg	
Calibration			
Light injection system	Accuracy of 1% on the gain	< 1%	
Alpha sources	Accuracy of 1% on the gain	< 1%	

- Required radiopurities of the SuperNEMO double beta decay foils are $\mathcal{A}(^{208}\text{TI}) < 2 \ \mu\text{Bq/kg}$ and $\mathcal{A}(^{214}\text{Bi}) < 10 \ \mu\text{Bq/kg}$.
- The best detection limit with HPGe (High Purity Germanium) for $^{208}{\rm TI}$ is around 50 $\mu{\rm Bq/kg},$
- Development of a dedicated BiPo planar detector,
- Proof of validity and first prototype (BiPo-1) installed in LSM,
- SuperNEMO source foils measurement in Canfranc.

◆□ > ◆□ > ◆豆 > ◆豆 >

- 27% efficiency to detect the BiPo cascade from a ²¹²Bi pollution on the surface of the scintillators
- Corresponds to a surface background of the BiPo-1 prototype of $\mathcal{A}(^{208}\text{TI}) = 1.5 \pm 0.3(stat) \pm 0.3(syst) \ \mu\text{Bq/m}^2$ in ^{208}TI .
- Level of background low enough to reach the required sensitivity of 2 μ Bq/kg in ²⁰⁸Tl with a larger detector.

- Construction of 40 optical sub-modules to start in April 2011 in the LAL Orsay clean room.
- Installation with the shield and clean tent in the Canfranc Underground Laboratory in November 2011.
- 6 months background measurement to start in December 2011
- 6 months measurement of the first SuperNEMO double beta source foils to start in May 2012. Validation of the radiopurity of the SuperNEMO foils available at the end of 2012.

Radiopurity measurements is a crucial task for the study of double beta decay process:

- for the selection of all the materials entering in the construction of the SuperNEMO demonstrator by low-background gamma spectrometry measurements,
- \bullet to find a way to decrease and control the level of radon inside the tracker chamber down to 0.2 mBq/m^3

Tools at the disposal of the Collaboration for such tasks:

- at LSM, two 400 cm³ coaxial-type HPGe detectors, a planar Broad Energy Germanium (BEGe) and a 600 cm³ coaxial-type spectrometer with typical sensitivities of 0.13 mBq/kg for ²¹⁴Bi) and 0.05 mBq/kg for ²⁰⁸TI
- the PRISNA platform (CENBG) with two HPGe detectors with a typical sensitivity around 50 mBq/kg. This is well-adapted for cables, shielding components located outside the tracker and calorimeter part and for a pre-screening of the samples for the SuperNEMO demonstrator.

WP4: the Radon issue

Sources of Radon by descending order of expected importance:

- Radon emanation from the materials inside the tracker (wires of the tracker, cathodic rings, support of the sources...),
- Radon emanation from the materials (PMT, shielding. . .) surrounding the tracker,
- Radon emanation from the laboratory and diffusion inside the tracker,
- Radon introduced in the tracker by the incoming gas

Solutions:

- tracker is isolated from the rest of the detector
- materials inside the tracker have to be very radiopure
- Radon-free air should be flushed around the PMT glass
- tracker and calorimeter are placed in an "anti-Radon tent"
- the incoming gas must be as radiopure as possible. Helium is purified by well-mastered techniques. The remaining 4% made of alcohol needs adapted charcoal or organic zeolith (CPPM).
- the Radon contamination of the gas must be measured. An electrostatic detector (such as in NEMO-3) has a sensitivity around 1 mBq/m³.
- to reach 0.2 mBq/m³ : coupling $\lesssim 1 \text{ mBq/m}^3$ sensitive detectors with a radon concentration device.

WP2/WP5: electronics/software

- Electronics :
 - Design and construction : calorimeter front-end, trigger, part of tracker front-end
 - Based on new generation ASICs (signal digitization, multi-channel) : LAL, LPC
 - Main responsability : LAL
- Software :

- Online software : BiPo DAQ
- Offline software : SuperNEMO, BiPo
- Simulation, visualization, data analysis
- Key contributions : LPC, LAL

< ∃ > < ∃ >

WP6: sources

Choice of the isotope(s):

- Large phase space factor (Q_{bb}^5 dependance) and removal of some background contributions call for large Q_{bb} values
- Best compromize for SuperNEMO is ⁸²Se , transition energy is large: 2.995 MeV, $\beta\beta2\nu$ half-life is $9.6 \pm 0.3(stat) \pm 1.0(syst)10^{19}$ y (measured by NEMO-3) leading to a reduction by a factor >10 of the background from the $\beta\beta2\nu$ decay as compared to ¹⁰⁰Mo.
- $\bullet~^{96}Zr,~^{150}Nd$ or ^{48}Ca are also very good candidates
- \bullet Possibility of enrichment by centrifugation of large amount of $^{82}Se,~^{100}Mo$ and ^{116}Cd and maybe ^{150}Nd
- With AVLIS (Atomic Vapor Laser Isotopic Separation), possibility for ¹⁵⁰Nd or ⁴⁸Ca

Source foil production:

- 5 kg ⁸²Se are already available
- ⁸²Se purification at a level of 2 and 10 μ Bq/kg for ²⁰⁸Tl and ²¹⁴Bi is a challenge : chemical purification similar to Molybdenium purification for NEMO-3 can be used and carried out in a class 100 clean room.
- production of foils based on laser techniques is under study (CCPM).

WP7/WP8/WP9: integration, installation, coordination

- Mechanics design mainly in France (LAL, CENBG)
- Hosting site : LSM
- Key responsabilities for french labs.

The main goals of the demonstrator module are

- demonstration of the feasibility of a full scale detector with the requested performances (e.g. calorimeter energy and time resolution, tracker efficiency and radio-purity).
- measurement of the radon background contribution especially from internal materials outgasing.
- measurement of the background contribution from the detector components.
- finalize/optimize the design of the full scale detector.
- production of a competitive measurement with ⁸²Se (2.5 years of data taking with a 7 kg source). After 17 kg.yr exposure with ⁸²Se, the sensitivity of the demonstrator will be 6.6 10²⁴ y (90% CL) which is equivalent to 3 10²⁵ y obtained with ⁷⁶Ge. This will lead to a neutrino mass sensitivity similar to GERDA Phase-I : $< m_{\nu} > \simeq 200$ -400 meV.
- Expected start of data taking: 2014/T2 for 3 years

Phase-I : this proposal

Component	Cost (k€)	Status
Calorimeter	1500	
Tracker	1500	funded (UK)
Source	500	350 k€ funded
Shielding	150	
Others	50	
BiPo	400	≃350 k€ funded
¹⁵⁰ Nd	150	
Total	4250	2200 k€ funded
		52 %
France	1400	33%
¹⁵⁰ Nd	+150	3%

Summary

- SuperNEMO : "tracko-calo" DBD experiment
- SuperNEMO Phase 1 (demonstrator) : 7 kg 82 Se \times 2.5 y (2014-2017)

$$\begin{split} T^{0\nu}_{1/2} &= 6.6 \ 10^{24} \ y \rightsquigarrow < N^{0\nu}_{obs} > = 3.5 \\ \text{Background} : < 1 \\ &< N^{2\nu}_{obs} > \lesssim 0.5 \\ &b_{ROI} = 1.10^{-4} \ /\text{kev}/\text{y}/\text{kg} \rightsquigarrow < N^{bkgd}_{obs} \lesssim 0. \\ < m_{\nu} > < 200\text{-}400 \ \text{meV} \end{split}$$

- Only experiment to investigate:
 - $\beta\beta0\nu\chi$ for $g_{ee} < 10^{-4}$ $\beta\beta0\nu$ to excited states
- 20-years know-how (NEMO 2, NEMO3)
- Funding: $\simeq 1.5 \text{ M} \in / 4.3 \text{ (NEMO 3 : } \simeq 2.5 \text{ M} \in \text{)}$
- Timescale for physics : 2014-2017
- Step to 500 kg.y DBD experiment (baseline : ⁸²Se) : 2016+

Back slides

æ

◆□> ◆圖> ◆注> ◆注>

The mass mechanism (MM)

w

 θ_{ii} ϕ_k

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} | M^{0\nu} |^2 < m_{\nu} >^2$$

where $< m_{\nu} >$ is the effective Majorana neutrino
mass:
$$< m_{\nu} > \equiv |\cos^2 \theta_{13} (| m_1 | \cos^2 \theta_{12} + | m_2 | e^{2i\phi_1} \sin^2 \theta_{12}) + | m_3 | e^{2i(\phi_2 - \delta)} \sin^2 \theta_{13} |$$

 θ_{ij} : mixing angles (ν oscillation exp.)
 ϕ_{ν} : Majorana phase: δ : CP-violating phase

lsotopes of experimental interest

lsotope	%	Q_{etaeta} (keV)	$G^{0 u}$ (y ⁻¹)	$G^{2 u}$ (y ⁻¹)
⁴⁸ Ca*	0.187	4271	$2.439 \ 10^{-25}$	$3.968 \ 10^{-17}$
⁷⁶ Ge	7.4	2039	$2.445 \ 10^{-26}$	$1.305 \ 10^{-19}$
⁸² Se*	8.73	2995	$1.079 \ 10^{-25}$	4.348 10^{-18}
⁹⁶ Zr*	2.8	3350	$2.242 \ 10^{-25}$	$1.927 \ 10^{-17}$
¹⁰⁰ Mo*	9.6	3034	$1.754 \ 10^{-25}$	9.434 10 ⁻¹⁸
¹¹⁶ Cd*	7.49	2802	$1.894 \ 10^{-25}$	$8.000 \ 10^{-18}$
¹³⁰ Te*	33.8	2533	$1.698 \ 10^{-25}$	4.808 10^{-18}
¹³⁶ Xe	8.9	2480	$1.812 \ 10^{-25}$	$4.831 \ 10^{-18}$
¹⁵⁰ Nd*	5.6	3367	$8.000 \ 10^{-25}$	$1.189 \ 10^{-16}$

 $\beta\beta 2\nu$: $(T_{1/2}^{2\nu})^{-1} = G^{2\nu} |M^{2\nu}|^2$

・ロト ・四ト ・ヨト ・ヨト

The Heidelberg-Moscow experiment (1990-2003)

- 5 ultrapure HPGe detectors (11 kg ⁷⁶Ge)
- Exposure : \simeq 72 kg.y of ⁷⁶Ge
- Background (ROI) : \simeq 80 counts
- Limit : $T_{1/2}^{0\nu}\gtrsim 2~10^{25}$ y

 $< m_{
u} > < 0.2 - 0.6$ eV

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

The Cuoricino experiment (2003-2006)

- 62 TeO₂ bolometers (11 kg ¹³⁰Te)
- Exposure : $\simeq 12$ kg.y of 130 Te
- Background (ROI) : \simeq 70 counts
- Limit : $T_{1/2}^{0\nu} > 3 \ 10^{24} \text{ y}$

 $< m_{
u} > < 0.19 - 0.68$ eV

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A very powerful approach

- Large mass of $\beta\beta$ source isotopes
- High efficiency
- Very good energy resolution
- Compacity of the experimental setup and shielding

Counterpart

- Only one observable (energy sum)
- No direct identification of the final state particles

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 Only one ββ isotope (detector≡source)

Expected backgrounds in the (2e) channel

NEMO-3 is able to measure each components of its background

• using independant channels to identify and measure different sources of background:

Channel(s)	Background category	Radio-contaminants
$e\gamma_{external}, e_{crossing}$	external background	⁴⁰ K, ⁶⁰ Co, ²²⁶ Ra
$e\gamma, e\gamma\gamma, e\gamma\gamma\gamma$	internal background	²⁰⁸ TI, ²⁰⁷ Bi
	from γ -emitters	
1 <i>e</i>	internal background	²³⁴ <i>m</i> Pa, ⁴⁰ K, ⁹⁰ Y
	from pure eta -emitters	
$elpha(\gamma)$	radon daughters deposited	²¹⁴ Bi, ²¹⁴ Po
	on wires and source foils	²¹² Bi, ²¹² Po

- elaborating a background model for each $\beta\beta$ isotope
- \rightsquigarrow predicting background contamination in 2*e* channel, particularly at the $Q_{\beta\beta}$ end point for $\beta\beta0\nu$ search

Isotope	Measurement	Number of	S/B	$T_{1/2}(2\nu)$, y
	time, days	2 u events		
¹⁰⁰ Mo	389	219000	40	$(7.17 \pm 0.01 \pm 0.54) imes 10^{18}$
¹⁰⁰ Mo- ¹⁰⁰ Ru(0 ⁺ ₁)	334.3	37.5	4	$(5.7^{+1.3}_{-0.9}\pm 0.8) imes 10^{20}$
⁸² Se	389	2750	4	$(9.6\pm0.1\pm1.0) imes10^{19}$
¹¹⁶ Cd	168.4	1371	7.5	$(2.88 \pm 0.04 \pm 0.16) imes 10^{19}$
⁹⁶ Zr	1221	428	1	$(2.35 \pm 0.14 \pm 0.16) imes 10^{19}$
¹⁵⁰ Nd	939	2018	2.8	$(9.11^{+0.25}_{-0.22}\pm0.63) imes10^{18}$
⁴⁸ Ca	943.16	116	6.8	$(4.4^{+0.5}_{-0.4}\pm0.4) imes10^{19}$
¹³⁰ Te	1152	236	0.35	$(7.0^{+1.0}_{-0.8}\pm0.9\pm1.0) imes10^{20}$

¹⁵⁰ Nd

etaeta 0 u			
Isotope	Measurement	T ^{0ν} _{1/2} , γ	$< m_{ u} >$
	time, days	(90 [°] %CL)	upper limit
¹⁰⁰ Mo	1409	$> 1.0\cdot 10^{24}$ y *	0.47-0.96 eV
⁸² Se	1409	$> 3.2 \cdot 10^{23}$ y *	0.94-2.5 eV
¹³⁰ Te	1221	$>1\cdot10^{23}$ y	
¹⁵⁰ Nd	939	$> 1.8\cdot 10^{22}$ y	
¹¹⁶ Cd	77	$>1.6\cdot10^{22}$ y	
⁴⁸ Ca	943	$> 1.3\cdot 10^{22}$ y	
⁹⁶ Zr	1221	$> 9.2 \cdot 10^{21}$ y	
$\beta\beta$ 0 $ u\chi$			
		$T_{1/2}^{0 u\chi}$, y	$< g_e e >$
		(90 [°] %CL)	upper limit
¹⁰⁰ Mo		$> 2.7 \cdot 10^{22}$ y *	$(0.4-1.8) \ 10^{-4}$
⁸² Se		$> 1.5\cdot 10^{22}$ y *	$(0.66-1.9) \ 10^{-4}$
¹⁵⁰ Nd		$> 1.52 \cdot 10^{21}$ y	$(1.7-3.0) \ 10^{-4}$

* Best world limits

Figure of merit of $\beta\beta$ isotopes

• Parameters of experimental interest :

$$\begin{array}{ll} \mathcal{N}_{obs}^{0\nu} & \equiv & \frac{M}{m_{A}} N_{A} t \varepsilon \frac{\log(2)}{T_{1/2}^{0\nu}} \\ & \equiv & \frac{M}{m_{A}} N_{A} t \varepsilon \log(2) G^{0\nu} \mid M^{0\nu} \mid^{2} < m_{\nu} >^{2} \end{array}$$

• Experimental factor of merit for t=constant (5 y) and $M^{0\nu} \simeq 3$ (no background experiment):

$$FOM \equiv \left(\frac{M}{m_A}\varepsilon G^{0\nu}\right)^{1/2}$$

• Comparison with 100 kg of 76 Ge :

$$FOM(^{76}Ge, 100 kg) \simeq 16(A.U.)$$

lsotope	$G^{0\nu}$ (A.U.)	ε	Mass (kg)
⁷⁶ Ge	0.24	0.8 (calo)	100
¹³⁰ Te	1.7	0.8 (calo)	25
⁸² Se	1.08	0.25 (tracko-calo)	75
¹⁵⁰ Nd	8.0	0.25 (tracko-calo)	20

▲□→ ▲ □→ ▲ □→ -

From NEMO-3 to SuperNEMO:

Parameter	NEMO-3	SuperNEMO
lsotope	¹⁰⁰ Mo	⁸² Se or other
Mass (kg)	7	100
Exposure (kg.yr)	31.5	500
Efficiency $\beta\beta0 u$ (%)	18	$\simeq 30$
Energy resolution at 1 MeV e ⁻	~ 15	~ 8
208 Tl in foil (μ Bq/kg)	< 20	< 2
214 Bi in foil (μ Bq/kg)	< 300	$<$ 10 (only for 82 Se)
222 Rn in gas (mBq/m ³)	$\simeq 5$	< 0.2 (only for ⁸² Se)
²²⁰ Rn in gas (mBq/m ³)	$\simeq 0.15$	< 0.03 (only for ⁸² Se)
Internal background, cts/mass/year	0.5	0.5
${\cal T}_{1/2}^{0 uetaeta}$ sensitivity (10 ²⁶ years)	> 0.02	> 1
$< m_{ u} >$ sensitivity (meV)	470–960	40-110

Comparison of the main NEMO-3 and SuperNEMO parameters.

The SuperNEMO demonstrator module: milestones

3

${\sf SuperNEMO}$

• 200 kg ¹⁵⁰ Nd × 5 y (
$$Q_{\beta\beta} = 3.3$$
 MeV):
 $T_{1/2}^{0\nu} = 2 \ 10^{26} \text{ y} \rightarrow \langle N_{obs}^{0\nu} \rangle = 3$
 $\langle N_{obs}^{2\nu} \rangle \lesssim 1.0$
No $E_{\gamma} = 2.6$ MeV (²⁰⁸ TI), no ²¹⁴ Bi, no radou
 $\langle m_{\nu} \rangle \langle 20-50 \text{ meV}$
 $\simeq ^{76}$ Ge 1-ton experiment
• 50 kg ⁴⁸Ca × 5 y ($Q_{\beta\beta} = 4.2$ MeV):
 $T_{1/2}^{0\nu} = 1.9 \ 10^{26} \text{ y} \rightarrow \langle N_{obs}^{0\nu} \rangle \simeq 1$
 $\langle N_{obs}^{2\nu} \rangle \lesssim 1.0$
No ²⁰⁸ TI, ²¹⁴ Bi, no radon
 $\langle m_{\nu} \rangle \langle 30-50 \text{ meV}$
• R&D for enrichement

◆□→ ◆□→ ◆注→ ◆注→ □注