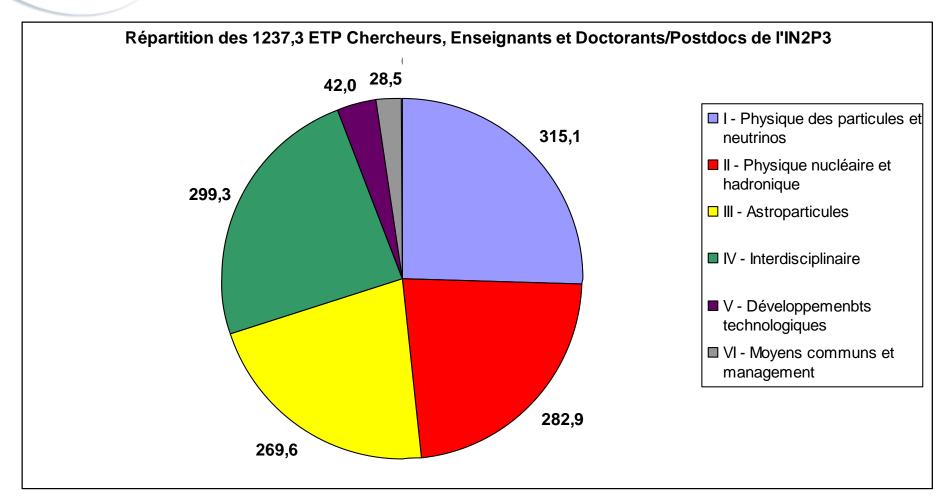
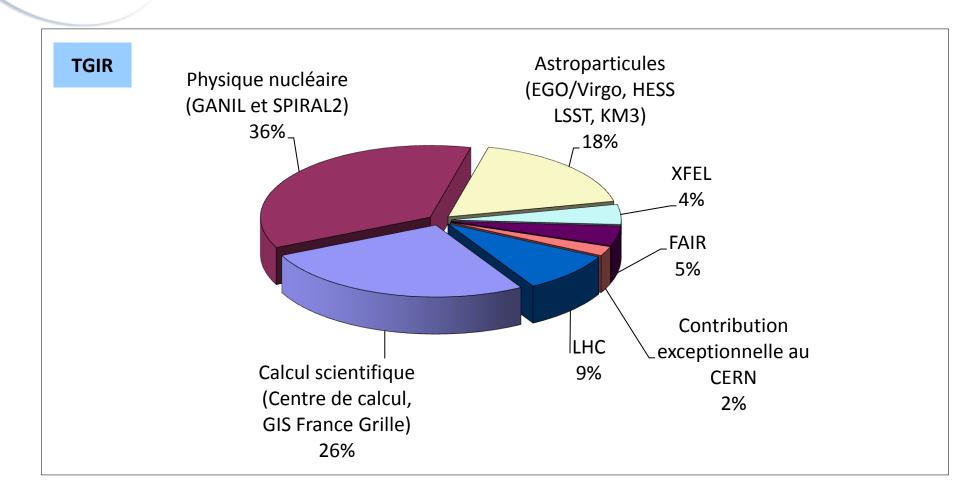
Dominique Guillemaud Mueller

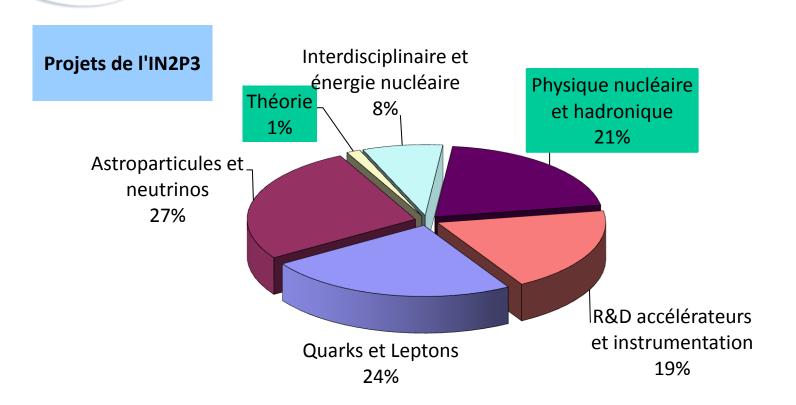


Conseil Scientifique Institut – 5 Mai 2011

www.in2p3.fr



IN2P3 FTE Physicists + Postdocs +PhD

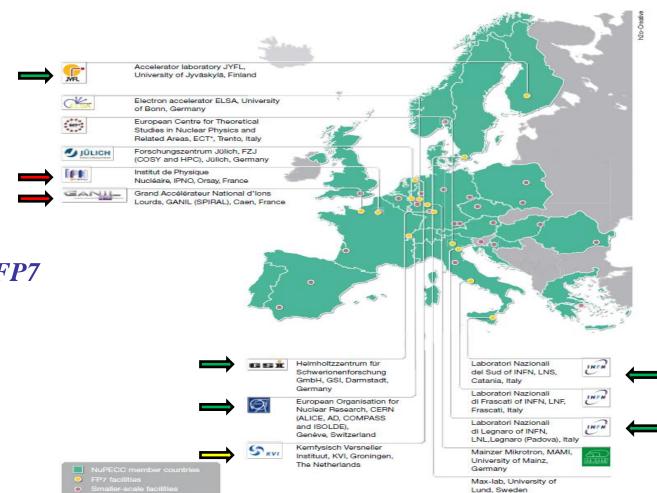


Répartition des TGIR

Répartition des Projets

NuPECC LRP2010 Recommendations

- Complete ESFRI Facilities
 - FAIR with PANDA, CBM,
 NuSTAR and FLAIR
 - SPIRAL2 at GANIL including S3 and DESIR
- Complete Major Upgrades
 - HIE-ISOLDE at CERN
 - SPES at INFN-LNL
 - AGATA
- Enhance potential of ALICE
 - Fully develop nuclear beam programme
 - Upgrade to new kinematical regime


- Support **Theory**
 - Develop projects for advanced studies related to the experimental roadmap
 - ECT* in Trento
- Existing Facilities
 - Fully exploit the currently existing large scale facilities
 - Fully exploit smaller scale national and University
 Nuclear Physics laboratories across Europe dedicated to nuclear structure and astrophysics experiments

Guenther Rosner

Conseil Scientifique Institut – 5 Mai 2011

Infrastructures en Europe

Integrated
Infrastructures dans FP7
ENSAR
HP 2 et 3
TNA Access

Supported

Physique Nucléaire Structure et Dynamique Nucléaires

Activités en cours

GANIL et SPIRAL1 : Etude de la Structure nucléaire et des Réactions EXOGAM, VAMOS, MUST2, TRAPS, FISSION, TPC, ACTAR-MAYA, INDRA-AZ4p, LISE,...

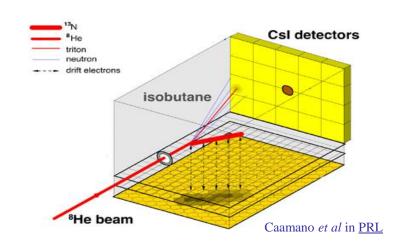
AGATA@Legnaro (puis GSI et SPIRAL2)

ALTO-Tandem Physique et préparation SPIRAL2

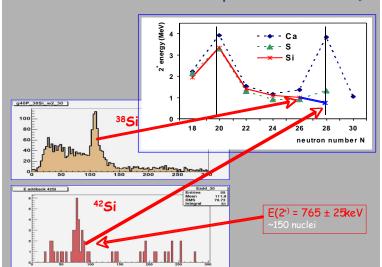
Structure et réactions auprès d'autres Installations : Europe-USA-Japon : ISOLDE, GSI, MSU, RIKEN, LOHENGRIN, LEGNARO, JYVASKYLA, DUBNA, GAMMA Pool, ANL, HIRF

Projet en construction

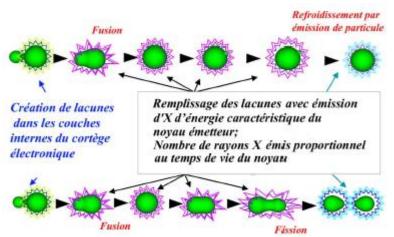
SPIRAL2 et Collaborations Internationales sur les Nouveaux Instruments (S3,DESIR, PARIS, GASPARD, NFS, FAZIA, EXOGAM2, ACTAR)


Futur plus lointain EURISOL Seconde génération de RIB

Quelques faits marquants!

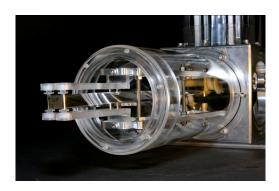

Une nouvelle radioactivité 2p B.Blank et al.

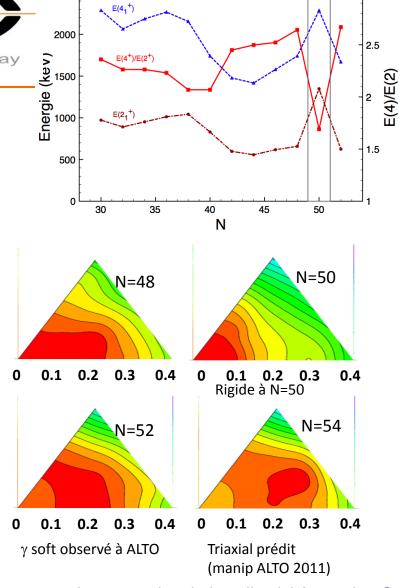
⁷H « Hydrogène super lourd»



Structure en couches en question!! S. Grévy et al.

Temps de fission de noyaux super-lourds Z=120 M. Morjean et al.

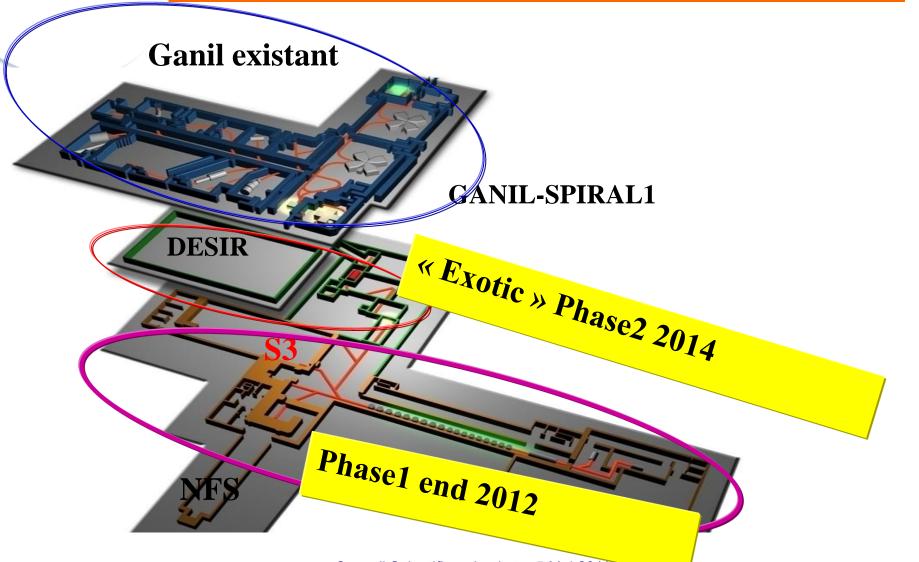


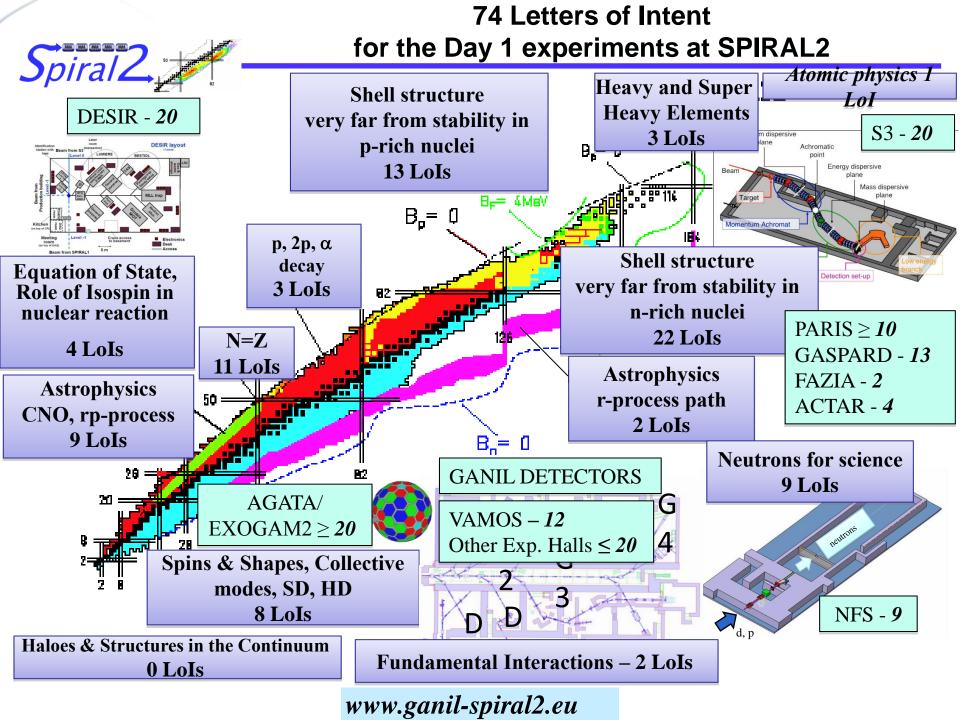

Programme de R&D sur les cibles UCx pour Spiral2 et ALTO

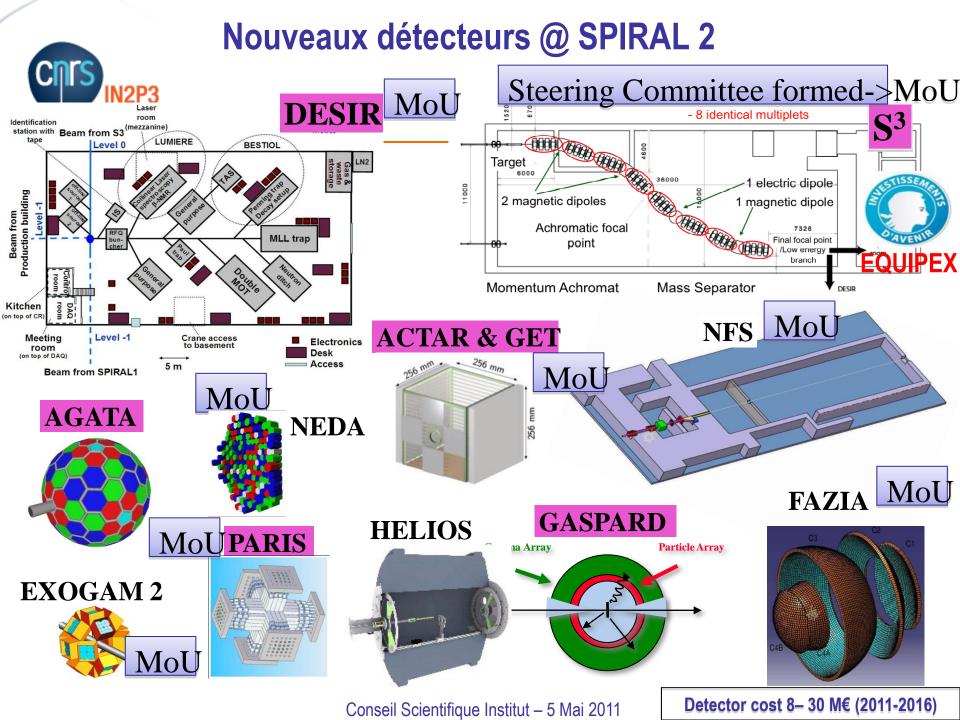
Collaborations (Ganil/Rennes-university/MoU ALTO-SPES/ENSAR

Programme R&D sources d'ions plasma et laser Préparation de la physique de Spiral2 notamment spectroscopie laser

Augmentation de la collectivité pour les Ge au voisinage de 78Ni






2006-2014 **200M**€

Complexe Accélérateur Unique au monde 5 expts en Parallèle

>1000 utilisateurs

Physique Hadronique

Collisions d'Ions Lourds

LHC ALICE,

CMS Ions Lourds

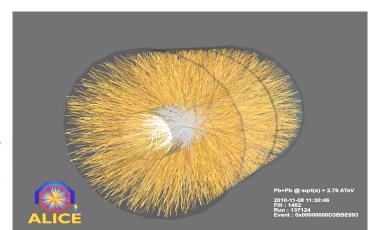
RHIC STAR

PHENIX

Structure du nucléon

JLAB et JLAB 12 GeV

FAIR PANDA,


GSI HADES (effets du milieu)

ALICE au LHC

ALICE à l'IN2P3

6 Laboratoires Principaux LPC-Clermont¹⁾, LPSC Grenoble²⁾, IPN-Lyon³⁾, IPHC-Strasbourg⁴⁾, IPN-Orsay⁵⁾, SUBATECH-Nantes⁶⁾

Responsabilités françaises majeures A. Baldisseri, P. Dupieux, Y. Schutz

Contributions majeures

Calorimétrie ECAL&DCAL²⁾⁶⁾ + SSD⁴⁾⁶⁾ + Muons trigger¹⁾⁶⁾ GMS⁵⁾ tracker⁶⁾ + Logiciels et Calcul (CC IN2P3, T2's ...) etc.

Contribution financière: 8.0% du "core" (i.e. 9.0/116 M€)

37 Permanents, 22 Post-doc & Doctorant(e)s

Implications R&D et upgrades:

Phase Ia (2013): Installation DCAL (besoins 2012-2013: 55 k€) LPSC, Subatech

Nouvelle Electronique V0 (besoin 2011-2013: 50 k€) IPN Lyon

MoU en cours de signature

Phase Ib (2017) et II (2021): R&D et construction

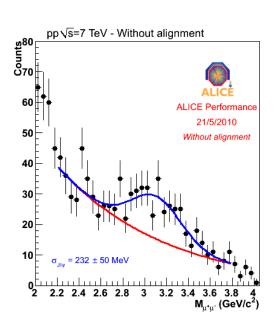
Besoin R&D et Upgrade IN2P3 exprimés en 2011: 125 k€

Tracker pixel pour spectromètre Muon (500 k€)

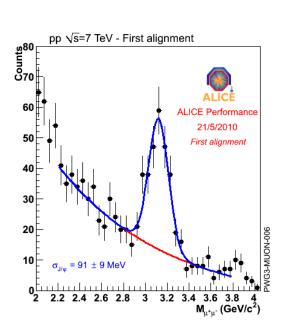
Nouvelle couche interne de pixels ITS (1 M€)

IPNL, Subatech

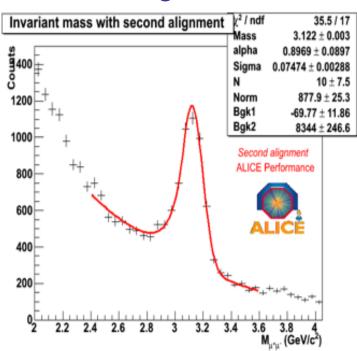
IPHC


Problème budgétaire en 2011 M&O A et B non couverts par TGIR

Conseil Scientifique Institut – 5 Mai 2011

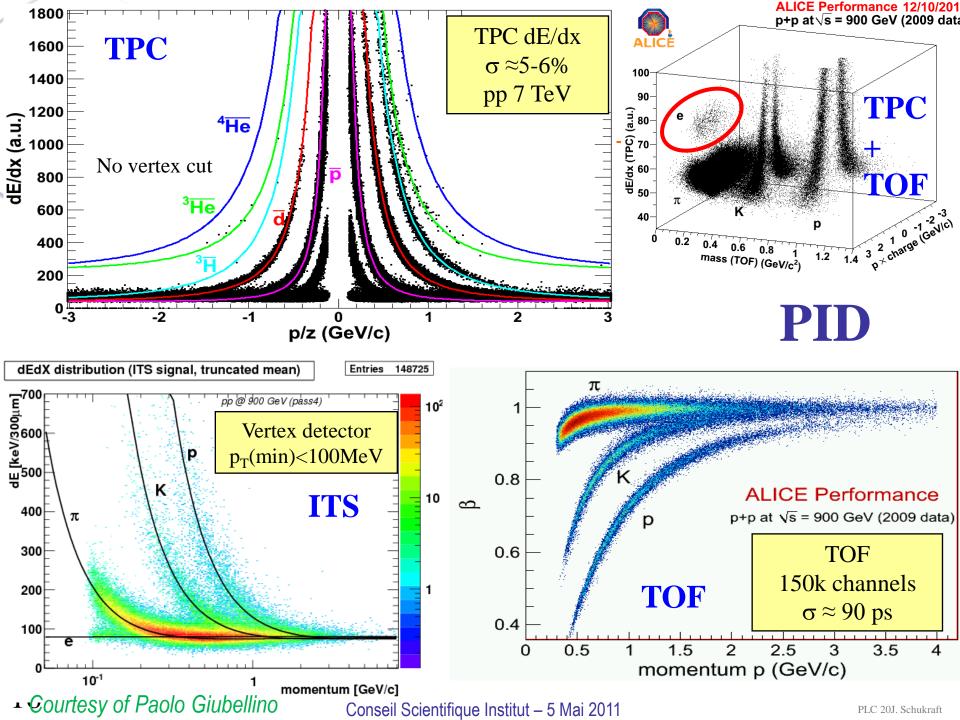


Muon spectrometer alignment


No and

1st alignment

2nd alignment



To be compared with expected performance with perfect alignment of 70 MeV

$$\sigma_{J/\Psi} = (75 \pm 3) \,\text{MeV/c}^2$$

Courtesy of Paolo Giubellino

ALICE shutdown work

ALICE detector 2010

ALICE detector 2011

3 TRD addedd (now 10/18)

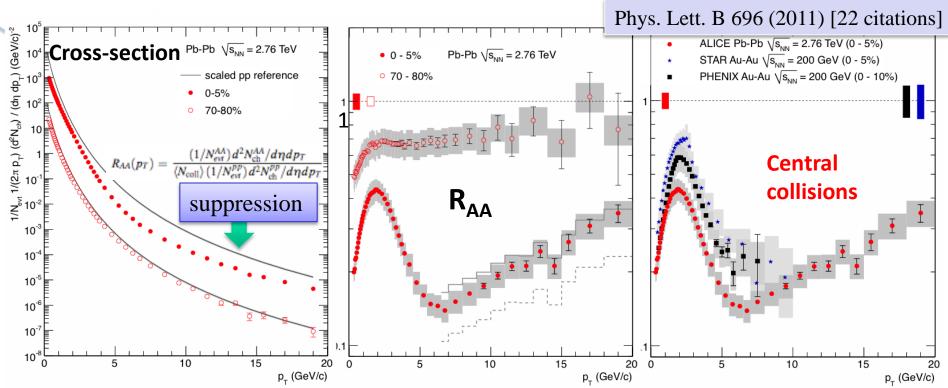
ALICE has made a very efficient use of the Xmas break:

- Installation EMCal and TRD (work during Xmas and NY)
- Upgrades (DAQ) and repairs (TPC FEC)
- · Maintenance on CV and gas equipments
- New cooling system for PMD

Wonderful support from Survey, Transport, VAC, CV and EL groups!

EMCal complete (+6 SM)

18/18 TOF 10/10 EMCAL +3 TRDs EMCal complete


Courtesy of Paolo Giubellino

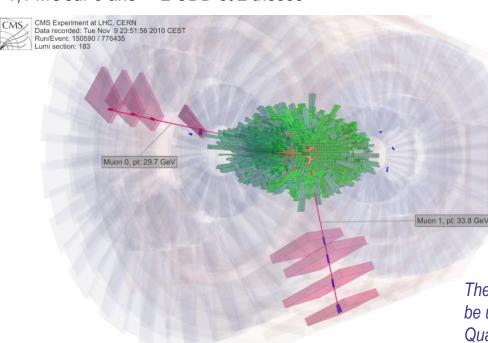
Jet quenching via hadron suppression

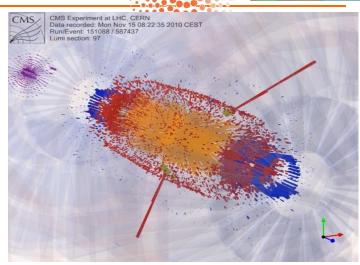
#(particles observed in AA collision per N-N (binary) collision)

Ratio =

#(particles observed per p-p collision)

- Strong depletion of high-pT hadrons in A-A collisions
 - parton energy loss (jet quenching)
- 2. Qualitatively new feature : evolution of R_{AA} as a function of p_T
- 3. New, much anticipated constraint for parton energy-loss models




CMS ions lourds

R. Granier de Cassagnac Co-Convener du groupe lons Lourds

ERC Starting Grant "Quark Gluon Plasma CMS" 1,1 M€ sur 5 ans = 2 CDD et 2 thèses

Premier Z jamais observés en collisions d'ions lourds

$$Z \rightarrow \mu + \mu -$$

$$Z \rightarrow e+e-$$

Pic du J/Ψ observé

The measurement of Z bosons in heavy-ion collisions at LHC could be used as a standard reference of the initial state when studying the Quark-GluonPlasma at the TeV scale.

GPDs image 3D du nucléon@TJNAF

Distributions (corrélées) en position—transverse et impulsion—longitudinale des quarks dans le proton?

(Accès à la contribution du moment orbital des quarks au spin du nucléon)

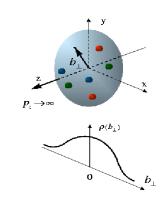
2009/10/11

Expériences DVCS

eN->eNγ à JLab:

E07-007: p-DVCS Rosenbluth-like separation LPC Clermont,

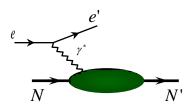
E08-025 : n-DVCS cross-sections

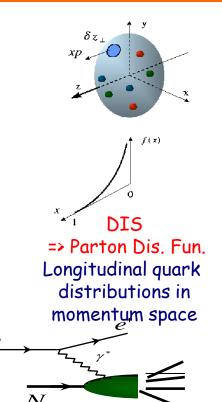

LPC clermont,

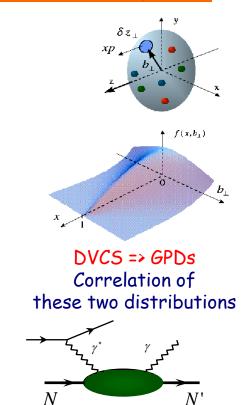
E05-114: polarized p-DVCS cross-

sections IPNO,

E08-024: He4-DVCS cross

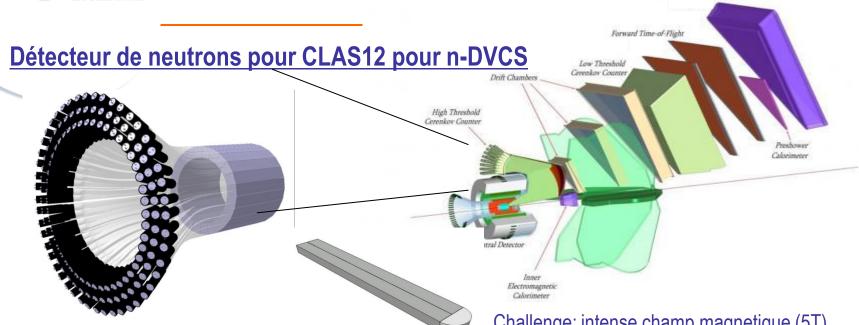

sections LPSC




Elastic scattering

-> Form Factors

Transverse quark
distribution in space



Nouvelles Expériences acceptées pour CEBAF 12GeV :

E12-11-003 S. Niccolai IPN ORSAY Deeply Virtual Compton Scattering on the Neutron with CLAS12 at 11 GeV with CEBAF at 12 GeV Hall B

E12-06-114 C. Munoz LPC Clermont Measurements of Electron-Helicity Dependent Cross Sections of Deeply Virtual Compton Scattering Hall A

Projets techniques pour CLAS12 GeV

Tonneau de scintillateurs pour détecter les neutrons de recul et signer l'exclusivité de la réaction en->enγ

Source de positrons pour DVCS avec positron

PEPPo (Polarized Electrons for Polarized Positrons) is a proof-of-principle experiment intented to evaluate the polarization transfer from polarized electrons to polarized positrons via bremsstrahlung and pair creation in a single production target.

Challenge: intense champ magnetique (5T). Longs guides de lumière en forme de "U" pour collecter la lumière

⇒Expérience approuvée en janvier 2011

Physique sous le seuil: 0<q²<4m_p²

Time-like form factors @ PANDA

Activités phénoménologiques

Modélisations réactions EM et hadroniques

Réalisation de générateurs

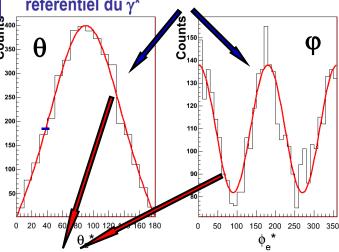
Corrections radiatives, processus à 2 photons

Observables de polarisation

Activités de simulation

Extraction du signal (efficacité et précision)

Bruits de fonds hadroniques (PID)

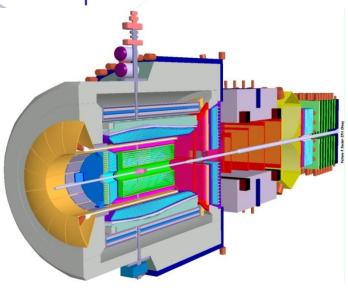

Space-like

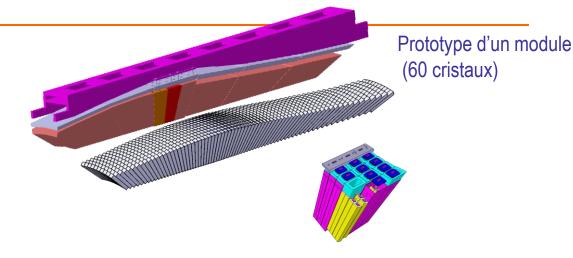
Time-like e^+ e^+ $e^ e^-$ p e^- p $e^ e^ e^-$

Collaboration
Allemagne, Italie, Ukraine,
Russie
GDR nucléon (groupe
'facteurs de forme')

 $\begin{array}{c|c}
\hline
p & & & & \\
\hline
s & & & & \\
\hline
p & & & & \\
\hline
p & & & & \\
\hline
e^+ & & & \\
\end{array}$

Mesure distributions angulaires dans le réferentiel du γ^*


2 asymétries \rightarrow Accès à $|G_E|/|G_M|$ et à la différence des phases


Première mondiale pour mesurer les facteurs de forme time-like du proton dans la région non physique

Projets techniques pour PANDA

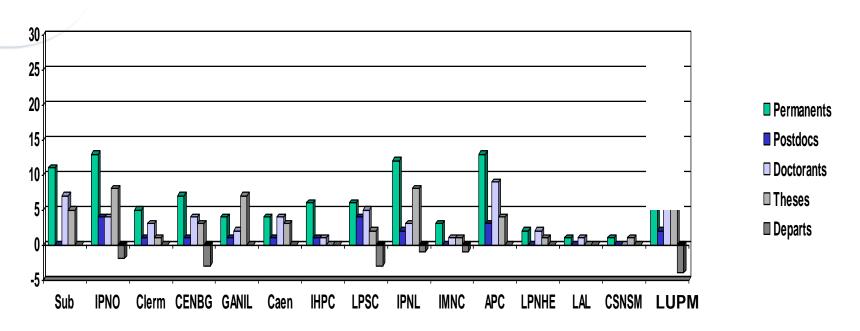
R&D pour la calorimétrie

Calorimètre central Vue générale d'une « tranche » (1/16) 710 cristaux de tungstate de plomb

Les calorimètres sont composés de plusieurs milliers de cristaux scintillants.

L'IPNO étudie un prototype de 18 détecteurs composés chacun de cristaux de CsI(TI) lus par des photomultiplicateurs

Conseil Scientifique Institut – 5 Mai 2011



Théorie à l'IN2P3

Théorie à l'IN2P3

Laboratoires sans groupe théorie CPPM (CPT) LLR (CPhT) LAPP (LAPTH)

Fortes relations avec l'INP

Allocation des moyens humains et budgétaires Suivi des carrières (évaluation, promotion, accueil en délégation)

Programmes de coopération scientifique (LIA, PICS) Evaluation des groupes théorie (AERES, CN, CS)

FINANCEMENT en 2011

- Fonctionnement (demande transmise par le directeur du laboratoire) 100 k€
- Appel à projets IN2P3 sur toutes les thématiques de l'IN2P3 crédits: 59,5 k€
- 3 CDD (Dynamique nucléaire, théorie LHC, Cosmologie non standard et matière noire)
- PEPS Projet exploratoire pluridisciplinaire implique plusieurs instituts crédits : 13 k€
- Concours CNRS CR1 02/03 Physique Nucléaire et Hautes Energies

Thèmes proposés pour l'appel à projets

Physique Nucléaire

- ✓ Multi fragmentation
- ✓ Etude statistique de l'équation d'état et des réactions nucléaires pour les supernovae,
- ✓ Signatures du pairing dans les noyaux : influence sur les propriétés statiques, dynamique et thermodynamique
- ✓ Fonctionnelles effectives pour la structure du noyau atomique
- ✓ Corrélations et symétries dans l'approche HTDA
- ✓ Mouvement collectif dans des systèmes d'atomes fermioniques piégés
- ✓ Symétrie tétraédrique nucléaire
- ✓ Modèles microscopiques de réactions nucléaires incluant le break up à 3 corps
- ✓ Nouvelles interactions nucléaires conçues pour une étude détaillée du canal de spin et nouvelles approches en fonctionnelles de la densité
- ✓ Description microscopique de la brisure de la symétrie d'isospin dans les états nucléaires
- ✓ Advanced Modeling of Prompt Neutrons Emitted during Low-Energy Nuclear Fission

Physique Hadronique

- ✓ Corrélations dans la matière hadronique modifications des propriétés mésoniques dans la phase haute densité de QCD et "scaling"
- ✓ Lattice calculations in hadronic physics
- ✓ Physique hadronique en QCD

Thèmes proposés pour l'appel à projets suite

Physique des particules

- ✓ Precise predictions for t tbar observables at hadron colliders
- √ Theorie LHC France
- √ Theoretical input for searching a signal beyond SM at LHC
- ✓ Recherche de signaux supersymétriques au LHC et développement d'outils.
- ✓ Tribimaximal Mixing from Small Groups

Astroparticules

- ✓ Astroparticules et collisionneurs au-delà du Modèle Standard
- ✓ Une méthode originale pour tester la nature de l'énergie noire
- ✓ Evolution non-linéaire de systèmes auto-gravitants
- ✓ Dark matter and non-standard cosmology
- ✓ Dynamique quantique dans l'Univers inflationnaire
- ✓ Constraining fundamental parameters of superstring theory through B-mode and Gravitational Wave observations
- ✓ Propagation des neutrinos dans les contextes astrophysique et cosmologiques et neutrinos reliques
- ✓ Simulation de collisions nucléaires à très haute énergie et gerbes atmoshériques dues aux rayons cosmiques

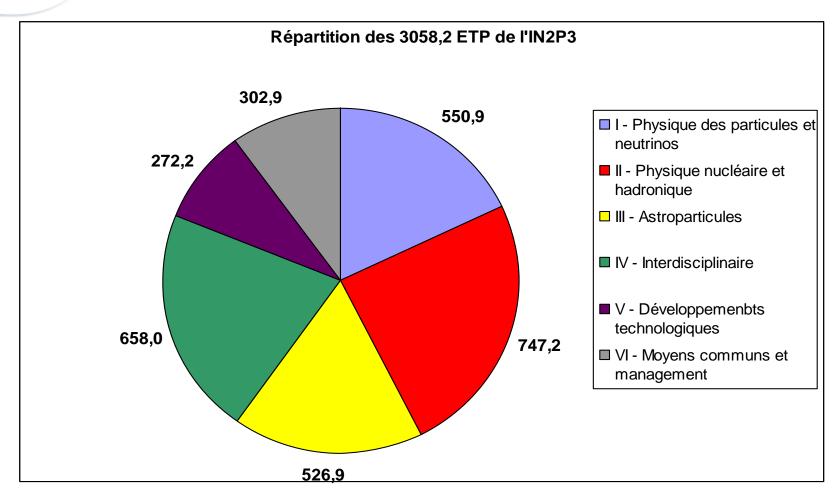
Interdisciplinaires

✓ Poser les fondations de modèles multi-échelles in vivo du développement de tumeurs gliales

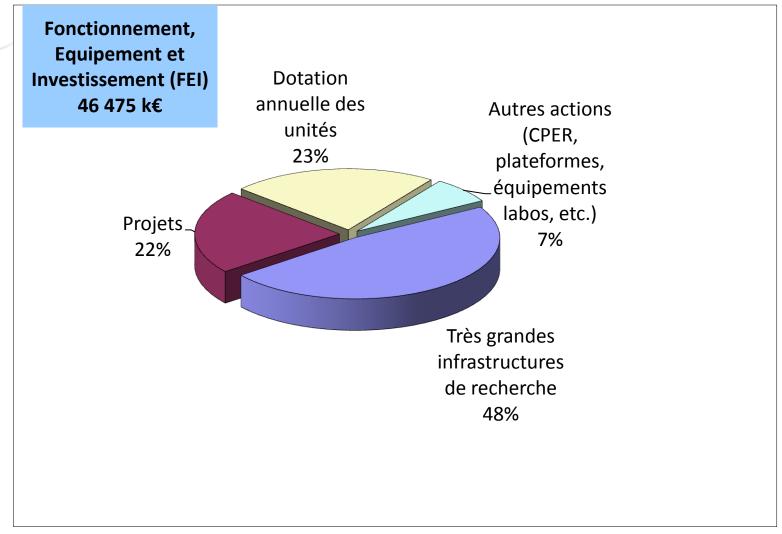
Projets "Physique Théorique et ses interfaces"financés en 2011 en relation avec des thématiques IN2P3

TOTAL: 39 k€ dont 23 k€ porteurs IN2P3

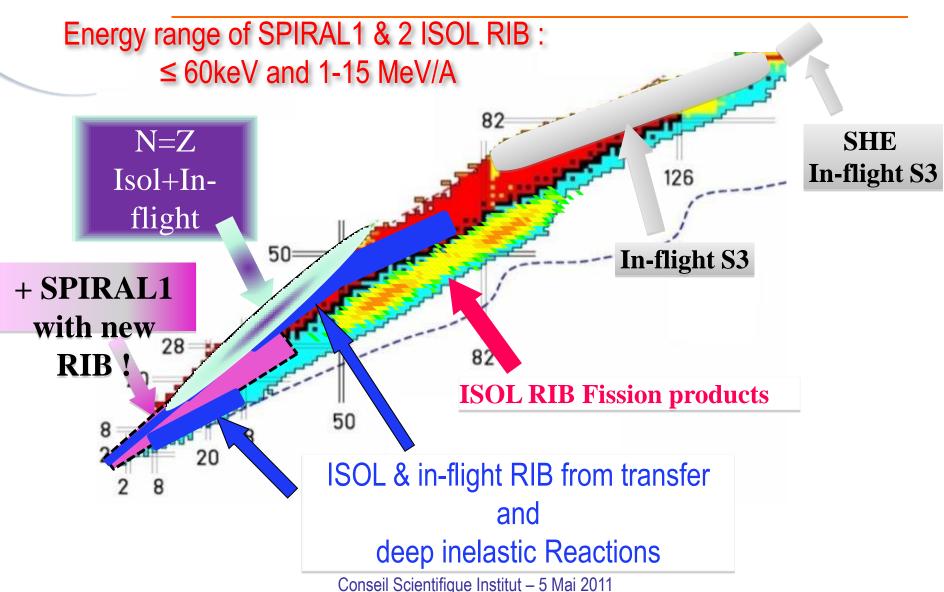
		PEPS PTI 2011 : Liste	des projets				
		BUDGET	107 000				
	Projets financés						
Institut du Labo	Instituts concernés	Projet	Responsable	Sect	Labo	Attributions 2011	
IN2P3	IN2P3-INP	Matière sombre et brisure de la symétrie électrofaible au LHC	DEANDRA Aldo 3		IPNL	4 000	
IN2P3	IN2P3-INP	Holographic Approaches to Strongly Correlated Condensed Matter Systems	KIRITSIS Elias 2		APC	8 000	
IN2P3	IN2P3-INSU-INP	Dynamique quantique dans l'Univers inflationnaire	SERREAU Julien 2		APC	2 000	
IN2P3	IN2P3-INP	Probing new observational signatures of cosmic strings and cosmic superstrings	STEER Danièle 2		APC	3 000	
IN2P3	IN2P3-INSU	Diffusion des gaz rares dans des monocristaux en présence de défauts	TASSAN-GOT Laurent 3		IPNO	2 000	
IN2P3	IN2P3-INP	Challenges in neutrino physics, neutrino astrophysics and cosmology	VOLPE Cristina 2		IPN	4 000	
INP	INSMI-IN2P3-INC-INSU- INSIS-INP	Interactions à longue portée : systèmes isolés et perturbations externes	DAUXOIS Thierry	2	LP	6 000	
INP	IN2P3-INP	Annihilation proton-antiproton en mésons charmés dans l'expérience PANDA	PIRE Bernard		СРНТ	2 000	
INSU	INSU-IN2P3-INP	Accélération de particules autour d'ondes de chocs relativistes	LEMOINE Martin 17		IAP	4 000	
INSU	INSU-IN2P3-INP	Constantes fondamentales et tests du principe d'équivalence aux échelles astrophysiques	UZAN Jean-Philippe	2	IAP	4 000	


Conseil Scientifique Institut – 5 Mai 2011

Merci


IN2P3 FTE

Conseil Scientifique Institut – 5 Mai 2011



Répartition Budgétaire

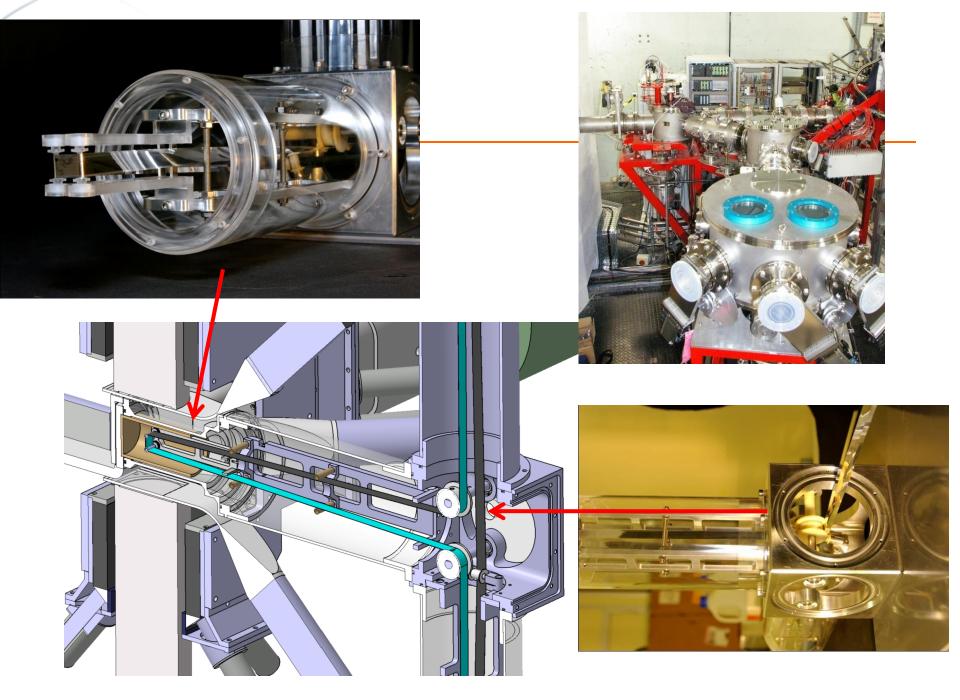
RIB and nuclei far from stability accessible with SPIRAL1 & SPIRAL2

Communication du CNRS

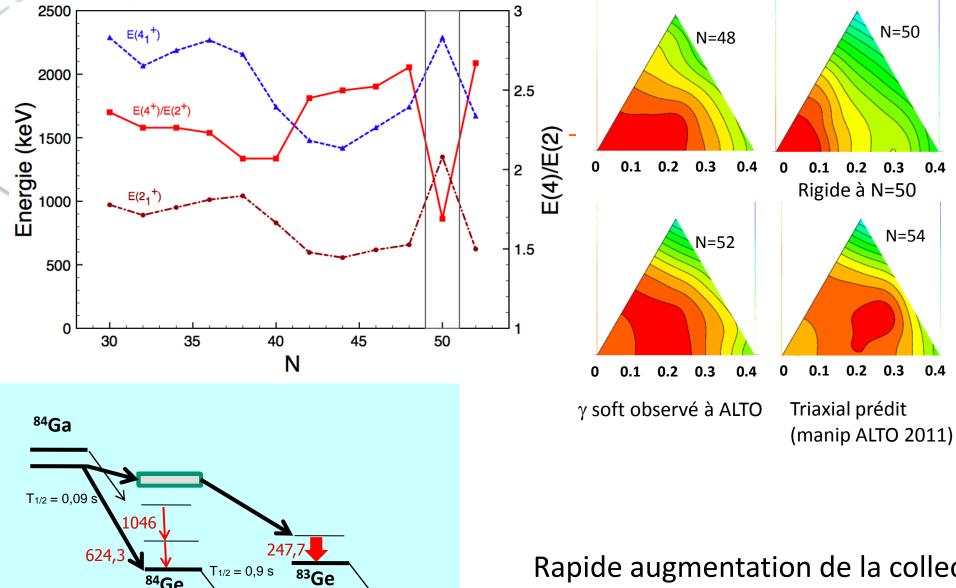
Paris, 18 octobre 2010

http://www.nupnet-eu.org

Stratégie en physique nucléaire : un premier accord européen voit le jour.


Les membres de NuPNET (1), réseau européen en physique nucléaire coordonné par le CNRS, ont arrêté le 15 octobre 2010 des axes stratégiques pour le financement des infrastructures de recherche européennes en physique nucléaire. Point de départ à un appel à propositions auquel toutes les agences de moyens pourront répondre, c'est une étape clé qui préfigure la physique nucléaire de demain.

- 1. La R&D technologique pour les détecteurs de nouvelle génération.
- Les technologies de détection des rayons gamma et des neutrons basées sur de nouveaux matériaux de scintillation et de nouveaux photo-détecteurs (APDs, SiPMs...).
- Les détecteurs gazeux à micro pistes en silicium (GEM, Micromegas) .
- Les détecteurs en diamant de grande taille pour les caractéristiques spatiales et temporelles des faisceaux de particules.
- 2. La R&D pour les infrastructures de l'accélérateur Eurisol : composants, sources-cibles et sources d'ions.
- 3. Une action ciblée dans le domaine de la théorie nucléaire relative à la structure et aux réactions.



Appel à projets lancé le 14 février 2011-deadline 22 avril 2011

From physics idea to the SPIRAL2 experiments and instruments 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 DDO **SPIRAL2** Baseline project construction phase **SPIRAL2** Brain-storming phase SPIRAL2 SPIRAL2 **Topical** White Book **Letters of Intent** Workshops **Detector Design Phase** Requests for New detector SPIRAL2 National funds at Scientific **Collaborations New detector** national funding **Formed TDR** Councils agencies **Detector Construction Phase** Each phase initiated & followed-up **Detector Detector Detector** Detector **Project** by the SPIRAL2 SAC MoU Construction Commissioning organization in a close collaboration with the Day 1 Experiments **SPIRAL2** project & GANIL LoI Day 1 LoI Day 1 management Day 1 SPIRAL2 Phase1 SPIRAL2 **Experiment** (HI Stable beams) Phase 2 **Proposals** (RIB) **EU FP7 Preparatory Phase** M. Lewitowicz Conseil Scientifique Institut – 5 Mai 2011

Conseil Scientifique Institut – 5 Mai 2011

306,5

⁸³As

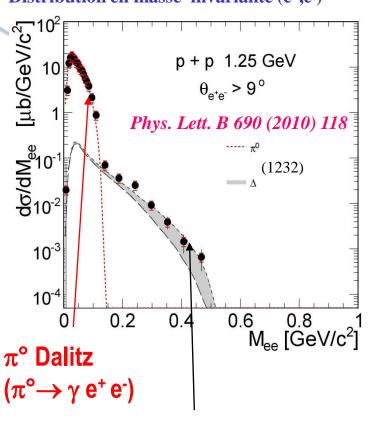
⁸⁴Ge

242,4 100

⁸⁴As


Rapide augmentation de la collec au voisinage de 78Ni

ue Institut – 5 Mai 2011



Mésons vecteurs dans la matière nucléaire

Collaboration Européenne : ~ 120 pers., 15 lab.

Distribution en masse invariante (e+,e-)

- \triangle Dalitz ($\triangle^+ \rightarrow p e^+e^-$)
- + effect of N-∆ transition form-factor (collaboration IPNO F. lachello)

Activités IPN en 2010

- Analyse des réactions élémentaires pp, pn voies leptoniques et pioniques
- Première mesure de la **décroissance Dalitz** $du \Delta : \Delta \to N e^+e^-$ en canaux inclusifs et exclusifs
- participation active à l'upgrade du détecteur

Production scientifique en 2010:

- 1PRL*, 1 PRC, 1 EPJA*,
 - *contribution importante de l'IPN
- 1 HDR juin 2010
- 1 thèse 13/12/2010
- 1 séminaire, 3 exposés à des workshops

2011 : organisation de la réunion de collaboration en France

ALICE au LHC

ALICE à l'IN2P3

6 Laboratoires Principaux LPC-Clermont¹⁾, LPSC Grenoble²⁾, IPN-Lyon³⁾, IPHC-Strasbourg⁴⁾, IPN-Orsay⁵⁾, SUBATECH-Nantes⁶⁾

Pb+Pb @ sqrt(s) = 2.76 ATeV 2010-11-08 11:30:46 Fill: 1482 Event: 0x000000000D3BBE693

Contributions majeures

Calorimétrie ECAL&DCAL²⁾⁶⁾ + SSD⁴⁾⁶⁾ + Muons trigger¹⁾⁶⁾ GMS⁵⁾ tracker⁶⁾ + Logiciels et Calcul (CC IN2P3, T2's ...) etc.

Contribution financière: 8.0% du "core" (i.e. 9.0/116 M€)

37 Permanents, 22 Post-doc & Doctorant(e)s

Responsabilités majeures au sein de l'expérience ALICE:

- A. Baldisseri^a (Project Leader MUON), P. Dupieux (Project leader MUON trigger),
 J.-Y. Grossiord (Project Leader V0), Y. Schutz (Porte Parole Adjoint)
- + diverses autres responsabilités centrales (sous-groupes de physique & coordination technique)

ALICE-France en quelques chiffres

Ressources humaines: stables par rapport à 2009

Laboratoire	Physiciens Permanents	Thésards	Post docs	Equivalents PHD	Personnels techniques	Total M&O-A	Total	
IPHC Strasbourg	5	2	1	0	1	6	9	8
IPN Lyon	4	1	1	1	0	6	7	6
IPN Orsay	4	2	1	1	0	6	8	7
IRFU Saclay	5	1	1	0	0	6	7	7
LPC Clermont	9	4	1	1	1	10	16	14
LPSC Grenoble	5	1	1	0	3	6	10	7
SUBATECH Nantes	10	4	2	1	1	13	18	16
CCIN2P3, Lyon	0	0	1	0	0	1	1	1
Total IN2P3	37	14	8	4	6	48	69	59
Total CEA	5	1	1	0	0	6	7	7
Total collaboration						572		

- Besoin de sang neuf pour optimiser l'impact dans l'analyse
- Problème budgétaire en 2011 M&O A (286k€) et B (152 k€) TGIR 318 k€